Fix crash or hang in generic/states unit test when doing stop()
right after start(). Create main loop in the start function already
and not just in the thread function, so that stop() always has a
valid main loop to quit on. Also, calling g_main_loop_quit() before
g_main_loop_run() won't work and result in the stop function waiting
for the thread to join forever. Therefore, wait for the thread to
be ready and get the main loop running in the start() function, to
be sure stop() always works.
PulseAudio 1.0 supports per-source-output volumes, and this exposes the
functionality via the GstStreamVolume interface.
When compiled against pre-1.0 PulseAudio, the interface is not
implemented, and the "volume" or "mute" properties are not available.
This bit of ugliness will go away when we can depend on PulseAudio 1.0
or greater.
https://bugzilla.gnome.org/show_bug.cgi?id=595055
Apparently libpng can technically do up to 2^31-1 rows and columns. However it
imposes an (arbitrary) default limit of 1 million (that could theoretically be
lifted by using some additional API).
Moved array allocation to the heap now.
A setcaps function needs to actually verify the caps carefully. In this case,
it was possible to e.g. link a video decoder with YUV+RGB template caps to
pngenc. That would cause a crash when the decoder pushes a YUV buffer. Same
thing when pushing a valid buffer that exceeds the resolution limits.
Also, missing framerate caps field would cause a glib critical warning due to
invalid GValue. This fails hard now.
This introduces a new bin which wraps around pulsesink and depending on
the formats supported by the sink, plugs in/out a decodebin2 as
required. This allows users to switch sinks on the stream and adapts
accordingly (for example, you could watch a movie in passthrough mode on
your receiver which supports AC3 decode, then plug out and switch to a
non-digital profile to continue uninterrupted on analog output).
The bin is required because doing the same with playbin2/playsink will
require API changes that cannot be made in 0.10. With 0.11/1.0, we
should be able to ask for upstream caps renegotiation to deal with all
this.
https://bugzilla.gnome.org/show_bug.cgi?id=657179
flacdec converts the src timestamp to a sample number, uses that internally, then reconverts the sample number to a timestamp for the output buffer. Unfortunately, sample numbers can't be represented in an integer number of nanoseconds, and the conversion process was truncating rather than rounding, resulting in sample numbers and output timestamps that were often off by a full sample.
This corrects the time->sample convesion
There's no use in splitting the incoming data down to the segsize
limit - by writing as much as possible in one chunk, we increase
performance and avoid PulseAudio unnecessary rewinds.
Signed-off-by: David Henningsson <david.henningsson@canonical.com>
The libFLAC API is callback based, and we must only call it to
output data when we know we have enough input data. For this
reason, a single processing step is done when receiving a buffer.
However, if there were metadata buffers still pending, a step
intended for the first audio frame might end up writing that
leftover metadata. Since a single step is done per buffer, this
will cause every buffer to be written one step late.
This would add some latency (a bufferfull's worth), possibly
lose a buffer when seeking or the like, and also cause timestamp
and offset to be applied to the wrong buffer, as updates to
the "current" segment last_stop (from incoming buffer timestamp)
will be applied to an output buffer originating from the previous
incoming buffer.
This fixes the issue by ensuring that, upon receiving the first
audio frame, processing is done till all metadata is processed,
so the next "single step" done will be for the audio frame. After
this, we should keep to 1 input buffer -> 1 output buffer and so
avoid getting out of sync.
https://bugzilla.gnome.org/show_bug.cgi?id=650960