The SVT-HEVC (Scalable Video Technology[0] for HEVC) Encoder is an
open source video coding technology[1] that is highly optimized for
Intel Xeon Scalable processors and Intel Xeon D processors.
[0] https://01.org/svt
[1] https://github.com/OpenVisualCloud/SVT-HEVC
It cleans up videoFormat by combining the wl_shm_formats and
drm_formats into a single table that represents the same format.
In addition, it adds NV61 format to the waylandsink.
commit 6adfb120ab added this flag to fix
builds with `-Werror`, and afterwards it was changed to use a version
check when newer versions of openexr moved over to C++11.
However, some distros have backported patches to older openexr
versions which make it require C++11, which makes the version check
incorrect and causes an error because we passed `-Werror -std=c++98`.
Instead, directly check when usage of the header requires `-std=c++98`
with `-Werror` and override the `cpp_std` setting on the target.
Fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/1117
Includes a new GstVulkanHandlePool base class for pooling different
resources togther. The descriptor cache object is ported to
GstVulkanHandlePool with the exact same functionality.
A new GstVulkanFenceCache is also implemented for caching fences
which is used internally by GstVulkanDevice for creating or reusing
fences.
The existing GstVulkanTrashFenceList object now caches trash objects.
Part 1 is a base class (vkvideofilter) that handles instance, device,
queue retrieval and holding that has been moved to the library
Part 2 is a fullscreenrenderquad that is still in the plugin that
performs all of the previous vulkan-specific functionality.
Based on Stream ID, the application can accept or reject the connection,
select the desired data stream, or set an appropriate passphrase for the
connection. Example usage:
srt://127.0.0.1:1234?streamid=mystream
Current code would change any non-ok return from gst_pad_push to
GST_FLOW_ERROR, thus hiding meaningful returns such as GST_FLOW_EOS.
Tests also added.
Most of avtpcvfdepay messages are currently logged as warnings, which can
make some scenarios - such as receiving two AVTP streams on the same
pipeline - too verbose.
This patch tones those message down to INFO or DEBUG level - more in
sync with avtpaafdepay logging.
To allow curlhttpsrc to support DASH streams that use the on-demand
profile, it needs to support HTTP Range GETs. In GStreamer, the RANGE
is specified by issuing a GST_FORMAT_BYTES seek to set the start and
end of the range. curlhttpsrc needs to implement seek and set the
appropriate curl options to make it add the Range header to the
request.
The major functionality gain this provides is proper reference counting
for a descriptor set. Overall this allows us to create descriptor sets
when they are needed (or reused from a cache) without violating any of
vulkan's object synchronisation requirements.
As there are a fixed number of sets available in a pool, the number of
descriptors in elements is currently hardcoded to 32. This can be extended
in a future change to create pools on the fly if that limit is ever overrun.
Allows a cleaner control flow when there is no fence available for use
with the trash list. An always signalled fence type will always return
TRUE for gst_vulkan_fence_is_signalled.
The following build error occurs:
vkdeviceprovider.h:30:10: fatal error: gst/vulkan/vulkan.h: No such file or directory
#include <gst/vulkan/vulkan.h>
^~~~~~~~~~~~~~~~~~~~~
By passing NULL to `g_signal_new` instead of a marshaller, GLib will
actually internally optimize the signal (if the marshaller is available
in GLib itself) by also setting the valist marshaller. This makes the
signal emission a bit more performant than the regular marshalling,
which still needs to box into `GValue` and call libffi in case of a
generic marshaller.
Note that for custom marshallers, one would use
`g_signal_set_va_marshaller()` with the valist marshaller instead.
It provides to set tile-columns and tile-rows configurations. The av1
codec allows an input image frame be partitioned into separate vertical
or horizontal tile which can be encoded or decoded independently. It
helps to encode/decode parallel.