Originally vaapivideobufferpool instantiates its own allocator regardless the
received configuration, and it relies in custom configuration options to
choose which kind of allocator instantiate.
This patch transfers the responsibility of the allocator instantiate to
vaapipluginbase and pass it to the vaapivideobufferpool through its
configuration.
* gst/vaapi/gstvaapipluginbase.c
+ set_dmabuf_allocator(): inserts a dmabuf allocator in the bufferpool
+ ensure_sinkpad_buffer_pool(): set a normal vaapi video allocator in
bufferpool configuration
+ gst_vaapi_plugin_base_propose_allocation(): call set_dmabuf_allocator() if
needed.
+ gst_vaapi_plugin_base_decide_allocation(): set a normal vaapi video
allocator in bufferpool configuration
* gst/vaapi/gstvaapivideobufferpool.c
+ gst_vaapi_video_buffer_pool_set_config(): instead of instantiate the
allocator, process the received one through its configuration.
* gst/vaapi/gstvaapivideobufferpool.h: removed
GST_BUFFER_POOL_OPTION_DMABUF_MEMORY since it is not used anymore.
* gst/vaapi/gstvaapivideomemory.c
+ gst_vaapi_is_dmabuf_allocator(): new helper function to identify a dmabuf
allocator with the vaapi qdata.
https://bugzilla.gnome.org/show_bug.cgi?id=765435
The support for GStreamer 1.0 has been obsoleted in 0.5.10 release.
GStreamer 1.2 is the a minimal requirement for building the gstreamer-vaapi.
This patch removes all the pre-processor conditional code compilation guarded
for gstreamer-1.0.
Thus, all the video converters were removed too.
https://bugzilla.gnome.org/show_bug.cgi?id=745728
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Signed-off-by: Sreerenj Balachandran <sreerenj.balachandran@intel.com>
GstVaapiVideoMemory quark is not needed any more, and the actual
implementation was already removed bfore the merge. i.e. this is
an oversight for a hunk that was not meant to be pushed.
Allow v4l2src element to connected to vaapipostproc or vaapisink when
"io-mode" is set to "dmabuf-import". In practice, this is a more likely
operational mode with uvcvideo. Supporting v4lsrc with "io-mode" set
to "dmabuf" could work, but with more demanding driver or kernel reqs.
Note: with GStreamer 1.4, v4l2src (gst-plugins-good) needs to be built
with --without-libv4l2.
https://bugzilla.gnome.org/show_bug.cgi?id=743635
Reword surface pool allocation helpers so that to allow for a simple
form, e.g. gst_vaapi_surface_pool_new(format, width, height); and a
somewhat more elaborated/flexible form with optional allocation flags
and precise GstVideoInfo specification.
This is an API/ABI change, and SONAME version needs to be bumped.
When interacting with SW elements, the buffers and underlying video
memory could be mapped as read/write. However, we need to use those
buffers again as plain VA surfaces, we have to make sure the VA image
is thus committed back to VA surface memory.
This fixes pipelines involving avdec_* and vaapi{postproc,sink}.
Use an image pool to hold VA images to be used for downloads/uploads
of contents for the associated surface.
This is an optmization for size. So, instead of creating as many VA
images as there are buffers (then VA surfaces) allocated, we only
maintain a minimal set of live VA images, thus preserving memory
resources.
Allow raw pixels of the whole frame to be mapped read-only. i.e. in
cases where the buffer pool is allocated without VideoMeta API, thus
individual planes cannot be mapped.
This is initial support for Firefox >= 30.
https://bugzilla.gnome.org/show_bug.cgi?id=731886
Reset the buffer pool allocator only if the config caps changed in a
sensible way: format or resolution change. i.e. don't bother with
other caps like colorimetry et al. as this doesn't affect the way to
allocate VA surfaces or images.
Fix GstVaapiVideoBufferPool::reset_buffer() to reset the underlying
memory resources, and more particularly the VA surface proxy. Most
importantly, the GstVaapiVideoMeta is retained. Cached surface in
memory are released, thus triggering a new allocation the next time
we need to map the buffer.
Make sure GstVaapiVideoMemory allocates VA surface proxies from a
pool stored in the parent VA memory allocator.
This fixes the following scenario:
- VA video buffer 1 is allocated from a buffer pool
- Another video buffer is created, and inherits info from buffer 1
- Buffer 1 is released, thus pushing it back to the buffer pool
- New buffer alloc request comes it, this yields buffer 1 back
- At this stage, buffers 1 and 2 still share the same underlying VA
surface, but buffer 2 was already submitted downstream for further
processing, thus conflicting with additional processing we were
about to perform on buffer 1.
Maybe the core GstBufferPool implementation should have been fixed
instead to actually make sure that the returned GstBuffer memory we
found from the pool is writable?
Move VA video buffer memory from "video/x-surface,type=vaapi" format,
as expressed in caps, to the more standard use of caps features. i.e.
add "memory:VASurface" feature attribute to the associated caps.
https://bugzilla.gnome.org/show_bug.cgi?id=703271
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Allow plain gst_buffer_map() interface to work with gstreamer-vaapi
video buffers, i.e. expose the underlying GstVaapiSurfaceProxy to the
caller. This is the only sensible enough thing to do in this mode as
the underlying surface pixels need to be extracted through an explicit
call to the gst_video_frame_map() function instead.
A possible use-case of this is to implement a "handoff" signal handler
to fakesink or identity element for further processing.
Implement GstVideoMeta::{,un}map() to support raw YUV buffer upload when
the last component is unmapped. Downloads are not supported yet. The aim
was to first support SW decoding + HW accelerated rendering (vaapisink).
e.g. for Wayland.
Add initial support for GstVaapiVideoMemory backed buffer pool. The memory
object currently holds a reference to GstVaapiVideoMeta.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>