This reverts commit fa008f271a.
async-handling in GstBin causes the pipeline to spin at 100%
CPU as the top-level pipeline tries to change that state
to PLAYING constantly. This is a workaround for a core
problem, essentially, but an improvement in this case for now.
After dropping the splitmux lock, re-check the state,
don't just fall through and sleep unconditionally,
as we may have already missed the wakeup.
https://bugzilla.gnome.org/show_bug.cgi?id=769514
The current 'l' pointer will be NULL when the loop
is interrupted with a 'break' statement. Need to have
it advance to the next list item before interrupting.
And don't just reset everything. This makes sure that we can continue to
handle data in the following scenario:
moov: discont
moof: discont
mdat: continuous
Previously this would fail because the offset would be the accumulated offset
from moov and moof at the mdat position, while the buffer offset might be
something completely different.
Use signed clock times for running time everywhere
so that we handle negative running times without
going haywire, similar to what queue and multiqueue
do these days.
Always intersect with the filter caps in the getcaps function
to make sure we return a subset of what was requested.
Other payloaders also have this problem and need fixing
in future commits.
At the end of a range request, we don't want to return GST_FLOW_EOS otherwise
the last bytes we just read will be dropped by basesrc.
Instead just return GST_FLOW_OK (which was set just before) and let basesrc
handle the fact we are at the end of the segment.
The type detection would lead to assertion as it would try
to create a device without having found any type for it. It
also didn't detect MPLANE devices properly.
The monitor sets the object->element object as a GstObject. This
works for debug traces, but will assert for ELEMENT_ERROR. This
was the only case where that could happen. Add a check for that.
If we're at the end of a range request, read again to let libsoup
finalize the request. This allows to reuse the connection again later,
otherwise we would have to cancel the message and close the connection.
We have to get rid of the message on EOS when the complete stream is read to
remember that we successfully finished handling this specific message.
Otherwise we will cancel it later and close the connection instead of reusing
it at a later time.
It might also make sense to reuse connections if a non-200 response is
received. As long as there was no connection error, the HTTP connection should
be re-usable.
Most of those have V4L2 drivers these days enabling it make sure that it
this code is enabled in major distribution, hence that HW accelerated
decoder/encoder can be used on platforms that support it. The probes are
slightly increasing the first init of gstreamer library, though the
result is cached in the registry for later use.
When parsing NAL unit type in codec_data, check the 6bits of
NAL_unit_type only and do not require the array_completeness bit to be
0, since the default and mandatory value of array_completeness is 1 for
hvc1.
https://bugzilla.gnome.org/show_bug.cgi?id=768653
After switching to using V4L2_CAP_DEVICE_CAPS we lost support for
multiplanar device types. After some research, it looks like
vcap.capabilities treated the multiplanar flag of output and capture
devices equally, but not the new device_caps.
https://bugzilla.gnome.org/show_bug.cgi?id=768195
There's no real reason to avoid sending QOS/NAVIGATION events upstrea.
Some elements might want to have that information.
Also remove downstream-only CAPS event handling and minimize code
A typo in gst_v4l2_probe_and_register() caused a build error when building
with --enable-v4l2-probe. Fixing it.
gstv4l2.c: In function 'gst_v4l2_probe_and_register':
gstv4l2.c:150:25: error: 'struct v4l2_capability' has no member named 'capabilitites'
device_caps = vcap.capabilitites;
The same physical device can export multiple devices. In
this case, the capabilities field now contains a union of
all caps available from all exported V4L2 devices alongside
a V4L2_CAP_DEVICE_CAPS flag that should be used to decide
what capabilities to consider. In our case, we need the
ones from the exported device we are using.
https://bugzilla.gnome.org/show_bug.cgi?id=768195
We should add all pads, no matter if they are linked or active or not at this
point. Skipping some that are not will cause different behaviour than with
other muxers.
This can only happen if a) upstream somehow gets around the CAPS event failing
or b) there never being any CAPS event.
The following code assumes that all pads have a codec-id.
https://bugzilla.gnome.org/show_bug.cgi?id=768509