As streams now flow independently, the GstSegment needs to be put
on each stream so they can track the position of each one correctly
instead of being mixed in a single segment
Download and push from the same task, makes code a lot simpler
to maintain. Also pushing from separate threads avoids deadlocking
when gst_pad_push blocks due to downstream queues being full
When a stream gets a not-linked return, it will be marked as so and
won't download any more new fragments until a reconfigure event
is received. This will make mssdemux expose all pads, but only download
fragments for the streams that are actually being used.
Relying on the pads being linked/unlinked isn't enough in this scenario
as there might be an input-selector downstream that is actually discarding
buffers for a given linked pad.
When streams are switching, the old active stream can be blocked because
input-selector will block not-linked streams. In case the mssdemux's
stream loop is blocked pushing a buffer to a full queue downstream it will
never unblock as the queue will not drain (input-selector is blocking).
In this scenario, stream switching will deadlock as input-selector is
waiting for the newly active stream data and the stream_loop that would
push this data is blocked waiting for input-selector.
To solve this issue, whenever an stream is reactivated on a reconfigure
it will enter into the 'catch up mode', in this mode it can push buffers
from its download thread until it reaches the currrent GstSegment's position.
This works because this timestamp will always be behind or equal to the maximum
timestamp pushed for all streams, after pushing data for this timestamp,
the stream will go back to default and be pushed sequentially from the main
streaming thread. By this time, the input-selector should have already
released the thread.
https://bugzilla.gnome.org/show_bug.cgi?id=711849
This prevents locking on startup when a stream only has a single buffer
for one of the streams and mssdemux decides to push an EOS event right
after it.
The buffer parameter wasn't being used, it was only to signal if
a buffer was downloaded and advance to the next fragment in the
manifest.
Replace the buffer with a boolean that has the same effect and is
safer
connection setup times seem to matter when measuring the download
rate of different streams. Streams with longer fragments have a
*relatively* lower connection setup time and achieve higher bitrates.
Using the average seems unfair here, so use each stream's measured bitrate
to select its best quality option.
We need to cancel the downloader for each stream before joining the main download task, otherwise
the download task will block until all the stream tasks finish.
There is no way to know if a live stream is really finished, so try to reload the manifest and check if there are more fragments to download. Else just let know it's the EOS.
Live streams force the demuxer to keep reloading the Manifest from
time to time, as the new fragments are being added as they are recorded.
The demuxer should also try to keep up and detect when it had to skip
fragments, marking the discont flag when that happens.
Curiously, the spec doesn't seem to mention when/how a live stream is supposed
to end, so keep trying downloads until the demuxer errors out.