Make the debug output less confusing by not mentioning a src
pad when doing calculations on the sink pad side.
Improve debug around why a GOP is considered overflowing a fragment
AAC and various other audio codecs need a couple frames of lead-in to
decode it properly. The parser elements like aacparse take care of it
via gst_base_parse_set_frame_rate, but when inside a container, the
demuxer is doing the seek segment handling and never gives lead-in
data downstream.
Handle this similar to going back to a keyframe with video, in the
same place. Without a lead-in, the start of the segment is silence,
when it shouldn't, which becomes especially evident in NLE use cases.
There used to be some profile/level support in encoders. This code was moved to
GstV4l2Codecs and is now also used for decoders. The caps templates for the
H.264, H.265, MPEG4, VP8 and VP9 encoders and decoders should now reflect the
profiles and levels advertised by the kernel.
sethostent() seems to be using a global state and we endup with leaks from
that API when called through shout_init(). We had the option to only
ignore the shout case, but the impression is that if we have shout and
another sethostend user, as it's a global state, we may endup with a
different stack trace for the same leak. So in the end, we just ignore
memory allocated by sethostent in general.
In this change we now protect the internal srcpads list using the
stream lock and limit usage of the internal stream lock to
preventing data flowing on the other src pad type while creating
and signalling the new pad.
This fixes a deadlock with RTPBin shutdown lock. These two locks would
end up being taken in two different order, which caused a deadlock. More
generally, we should not rely on a streamlock when handling out-of-band
data, so as a side effect, we should not take a stream lock when
iterating internal links.
Allocator resources cannot be freed when a buffer pool is orphaned
while its buffers are in use. They should, however, be freed once those
buffers are no longer needed. This patch disposes of any buffers
belonging to an orphaned pool as they are released, and makes sure
that the allocator is cleaned up when the last buffer is returned.
When trying to orphan a buffer pool, successfully return and unref
the pool when the pool is either successfully stopped or orphaned.
Indicate failure and leave the pool untouched otherwise.
This means we can use some newer features and get rid of some
boilerplate code using the G_DECLARE_* macros.
As discussed on IRC, 2.44 is old enough by now to start depending on it.
It must be accurate for all samples to work in Final Cut properly, so
the best we can do is to assume that all samples are the same as the
first. Bigger samples are truncated, smaller samples are padded.
This takes the timestamp of the earliest stream and offsets it so that
it starts at 0. Some software (VLC, ffmpeg-based) does not properly
handle Matroska files that start at timestamps much bigger than zero.
Closes https://gitlab.freedesktop.org/gstreamer/gst-plugins-good/issues/449
There is only a single sink element in async-finalize mode, and we would
keep the running time from previous fragments set in that case. As we
don't ever set the running time for the very last fragment on EOS, this
would mean that the closing time reported for the very last fragment is
the same as the closing time of the previous fragment.
This is a tiny clarification as the storage was loosely named "storage".
This change clarify that the storage is specificaly used for received RTP
packets. This is unlike the storage found in rtprtxsend that stores a
backlog of sent RTP packets.
We recently added code to remove outdate NACK to avoid using bandwidth
for packet that have no chance of arriving on time. Though, this had a
side effect, which is that it was to get an early RTCP packet with no
feedback into it. This was pretty useless but also had a side effect,
which is that the RTX RTT value would never be updated. So we we stared
having late RTX request due to high RTT, we'd never manage to recover.
This fixes the regression by making sure we keep at least one NACK in
this situation. This is really light on the bandwidth and allow for
quick recover after the RTT have spiked higher then the jitterbuffer
capacity.
The second udpsrc (rtcp) might not have seen the segment event if it was
not enabled or if rtcp is not available on the server. So if the
application tries to send an EOS event it will try to set an invalid
seqnum to the event.
Right now, we may call on-new-ssrc after we have processed the first
RTP packet. This prevents properly configuring the source as some
property like "probation" are copied internally for use as a
decreasing counter. For this specific property, it prevents the
application from disabling probation on auxiliary sparse stream.
Probation is harmful on sparse streams since the probation algorithm
assume frequent and contiguous RTP packets.
Port objects acquired with jack_get_ports() need to be freed with
jack_free(3), not stdlib free().
On Windows, Jack may be linked against different libc than GStreamer
libraries so free()ing port objects directly might cause crash because
of libc mismatch.
Scaletempo doesn't support non-interleaved layout. Not explicitely stating this
would trigger critical warnings and a caps negotiation failure when scaletempo
is used as playbin audio-filter.
Patch suggested by George Kiagiadakis <george.kiagiadakis@collabora.com>.
Fixes#591