wavparse claims to be able to support seeking in the READY state by
saving the pending seek event and actually seeking later after having parsed the
header.
Problem was that this seek event was reset on the READY to PAUSED
transition, making all this code useless. Fixing it by stop resetting
on READY to PAUSED transition as we already reset on PAUSED to READY
and when initiating the element.
Note that DTS marker detection isn't support in such scenario as
gst_type_find_helper_for_buffer() needs a buffer containing the
beginning of the stream.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-good/-/merge_requests/879>
In push mode (streaming), if the audio size is smaller than segment buffer size, it would be ignored.
This happens because when the plugin receives an EOS signal while a single audio chunk that is less than the segment buffer size is buffered, it does not
flush this chunk. The fix is to flush the data chunk when it receives an EOS signal and has a single (first) chunk buffered.
How to reproduce:
1. Run gst-launch with tcp source
```
gst-launch-1.0 tcpserversrc port=3000 ! wavparse ignore-length=0 ! audioconvert ! filesink location=bug.wav
```
2. Send a wav file with unspecified data chunk length (0). Attached a test file
```
cat test.wav | nc localhost 3000
```
3. Compare the length of the source file and output file
```
ls -l test.wav bug.wav
-rw-rw-r-- 1 amr amr 0 Aug 15 11:07 bug.wav
-rwxrwxr-x 1 amr amr 3564 Aug 15 11:06 test.wav
```
The expected length of the result of the gst-lauch pipeline should be the same as the test file minus the headers (44), which is ```3564 - 44 = 3520``` but the actual output length is ```0```
After the fix:
```
ls -l test.wav fix.wav
-rw-rw-r-- 1 amr amr 3520 Aug 15 11:09 fix.wav
-rwxrwxr-x 1 amr amr 3564 Aug 15 11:06 test.wav
```
In push mode (streaming), if the last audio payload chunk is less than the segment rate buffer size, it would be ignored since the plugin waits until it has at least segment rate bufer size of audio.
The fix is to introduce a flushing flag that indicates that no more audio will be available so that the plugin can recognize this condition and flush the data is has even if it is less
than the desired segment rate buffer size.
RF64 encode support was added to wavenc quite some time
ago, but not declared in wavparse. It seems wavparse can
decode it though, so add it to the sink pad.
The RF64 support was added in
https://bugzilla.gnome.org/show_bug.cgi?id=735627
There might be other chunks after the data chunk, so clipping the chunk
size with the data size can lead to a negative number and all following
calculations go wrong and cause crashes or worse.
This was introduced in 3ac119bbe2.
https://bugzilla.gnome.org/show_bug.cgi?id=783760
In case wavparse receives a manually injected FLUSH_STOP event
while operating in pull mode we get criticals because we'd try
to clear a NULL adapter.
https://bugzilla.gnome.org/show_bug.cgi?id=777123
https://github.com/mesonbuild/meson
With contributions from:
Tim-Philipp Müller <tim@centricular.com>
Jussi Pakkanen <jpakkane@gmail.com> (original port)
Highlights of the features provided are:
* Faster builds on Linux (~40-50% faster)
* The ability to build with MSVC on Windows
* Generate Visual Studio project files
* Generate XCode project files
* Much faster builds on Windows (on-par with Linux)
* Seriously fast configure and building on embedded
... and many more. For more details see:
http://blog.nirbheek.in/2016/05/gstreamer-and-meson-new-hope.htmlhttp://blog.nirbheek.in/2016/07/building-and-developing-gstreamer-using.html
Building with Meson should work on both Linux and Windows, but may
need a few more tweaks on other operating systems.
The wav spec tells that 'fmt' (and 'bext' if present) must come before 'data'.
There is no requirement for 'fmt' to be first. We already had a list of chunks
to skip, but it is easier to just skip any chunk while seeking for 'fmt'.
This fixes reading files generated by ProTools.
Especially in push mode we would completely ignore the size of the data chunk
when not stop position is given for the seek. Instead make sure that the end
offset is at most the end of the data chunk if known.
Without this we would output anything after the data chunk, possibly causing
loud noises if the media file is followed by an INFO chunk or an ID3 tag.
We use that to signal "infinity", taking the difference between that and some
other value is not going to give us any useful result for the end offsets of
segments.
Even if we have more data queued up when flushing than the size of the data
chunk, don't process and output it. If the data size is known, this likely
contains another chunk (e.g. an INFO chunk) or things like ID3 tags. Just
outputting them as if they were data is going to cause unexpected behaviour
and unpleasant audio noises.
Assignment is done to variable segment.stop when the intention was to assign to
local variable stop. Instead of overwriting it, the value is now clamped and
segment.stop is set to it soon after.
CID #1265773
We have to skip 12 bytes of data for the chunk, and the data size
passed to the sub-chunk parsing functions should have 4 bytes less
than the data size.
Also when parsing the sub-chunks, check if we actually have enough
data to read instead of just crashing.
https://bugzilla.gnome.org/show_bug.cgi?id=736266
If the wav header contains an extended chunk, we want to keep
the codec_data field, but not for raw audio.
This fixes some elements (such as adder) from failing to intersect
raw audio caps which would otherwise be intersectable.