If there is an external source which is about to timeout and be removed
from the source hashtable and we receive feedback RTCP packet with the
media ssrc of the source, we unlock the session in
rtp_session_process_feedback before emitting 'on-feedback-rtcp' signal
allowing rtcp timer to kick in and grab the lock. It will get rid of
the source and rtp_session_process_feedback will be left with RTPSource
with ref count 0.
The fix is to grab the ref to the RTPSource object in
rtp_session_process_feedback.
https://bugzilla.gnome.org/show_bug.cgi?id=795139
These are the sources we send from, so there is no reason to
report receive statistics for them (as we do not receive on them,
and the remote side has no knowledge of them).
https://bugzilla.gnome.org/show_bug.cgi?id=795139
ULP FEC, as defined in RFC 5109, has the protected and protection
packets sharing the same ssrc, and a different payload type, and
implies rewriting the seqnums of the protected stream when encoding
the protection packets. This has the unfortunate drawback of not
being able to tell whether a lost packet was a protection packet.
rtpbasedepayload relies on gaps in the seqnums to set the DISCONT
flag on buffers it outputs. Before that commit, this created two
problems:
* The protection packets don't make it as far as the depayloader,
which means it will mark buffers as DISCONT every time the previous
packets were protected
* While we could work around the previous issue by looking at
the protection packets ignored and dropped in rtpptdemux, we
would still mark buffers as DISCONT when a FEC packet was lost,
as we cannot know that it was indeed a FEC packet, even though
this should have no impact on the decoding of the stream
With this commit, we consider that when using ULPFEC, gaps in
the seqnums are not a reliable indicator of whether buffers should
be marked as DISCONT or not, and thus rewrite the seqnums on
the decoding side as well to form a perfect sequence, this
obviously doesn't prevent the jitterbuffer from doing its job
as the ulpfec decoder is downstream from it.
https://bugzilla.gnome.org/show_bug.cgi?id=794909
Looping the test 500 times to only execute the test once every
33 times means we inited and deinited gstreamer 467 times
for no reason at all, which was annoying when running the test
with valgrind.
After investigating, we do dispose of the TLS connections
appropriately in the souphttpsrc test, which in turn
calls gnutls_deinit, but certificates get leaked anyway.
We expose a set of new elements:
* ULPFEC encoder / decoder
* A storage element, which should be placed before jitterbuffers,
and is used to store packets in order to attempt reconstruction
after the jitterbuffer has sent PacketLost events
* RED encoder / decoder (RFC 2198), these are necessary to
use FEC in webrtc, as browsers will propose and expect ulpfec
packets to be wrapped in red packets
With contributions from:
Mathieu Duponchelle <mathieu@centricular.com>
Sebastian Dröge <sebastian@centricular.com>
https://bugzilla.gnome.org/show_bug.cgi?id=792696
When the signal returns a floating reference, as its return type
is transfer full, we need to sink it ourselves before passing
it to gst_bin_add (which is transfer floating).
This allows us to unref it in bin_remove_element later on, and
thus to also release the reference we now own if the signal
returns a non-floating reference as well.
As we now still hold a reference to the element when removing it,
we also need to lock its state and setting it to NULL before
unreffing it
Also update the request_aux_sender test.
https://bugzilla.gnome.org/show_bug.cgi?id=792543
TOC support in mastroskamux has been deactivated for a couple of years. This commit updates it to recent GstToc evolutions and introduces toc unit tests for both matroska-mux and matroska-demux.
There are two UIDs for Chapters in Matroska's specifications:
- The ChapterUID is a mandatory unsigned integer which internally refers to a given chapter. Except for title & language which use dedicated fields, this UID can also be used to add tags to the Chapter. The tags come in a separate section of the container.
- The ChapterStringUID is an optional UTF-8 string which also uniquely refers to a chapter but from an external perspective. It can act as a "WebVTT cue identifier" which "can be used to reference a specific cue, for example from script or CSS".
During muxing, the ChapterUID is generated and checked for unicity, while the ChapterStringUID receives the user defined UID. In order to be able to refer to chapters from the tags section, we maintain an internal Toc tree with the generated ChapterUID.
When demuxing, the ChapterStringUIDs (if available) are assigned to the GstTocEntries UIDs and an internal toc mimicking the toc is used to keep track of the ChapterUIDs and match the tags with the appropriate GstTocEntries.
https://bugzilla.gnome.org/show_bug.cgi?id=790686
Sometimes all the buffers are received before the time we lock the
check_mutex, in which case g_cond_wait will wait forever for another
one. Just check if this is the case before waiting.
https://bugzilla.gnome.org/attachment.cgi?id=358397
This patch simplifies the tests (44% less code) and
makes them much more readable.
The provided SessionHarness also makes it much easier
to write new tests for rtpsession.
https://bugzilla.gnome.org/show_bug.cgi?id=791070
If the use-robust-muxing property is set, check if the
assigned muxer has reserved-max-duration and
reserved-duration-remaining properties, and if so set
the configured maximum duration to the reserved-max-duration
property, and monitor the remaining space to start
a new file if the reserved header space is about to run out -
even though it never ought to.
Switching to a new fragment because the input caps have
changed didn't properly end the previous file. Use the normal
EOS sequence to ensure that happens. Add a test that it works.
SoupSession's ssl-ca-file property is deprecated. Use the recommended
tls-database property.
This is a bit more complex as it requires creating a GTlsFileDatabase
object for an absolute (!) path to the CA certificates file.
https://bugzilla.gnome.org/show_bug.cgi?id=784005
Even though hooked up to the build system, it's clear that no one
has ever built or used this with GStreamer 1.x. It wants to link
against libgstinterfaces, which no longer exists. And uses 0.10-style
raw audio caps. And the last meaningful change was done in 2009.
Let's just remove it.
streamheader and codec_data buffers fields are only meant to be
in the negotiated caps, not the template caps.
Fixes false-positive leaks of those buffers detected by the leaks
tracer, as template caps are static, and we decided to not include
code in gstreamer core to handle this unusual case of template caps
having buffers in them.
https://bugzilla.gnome.org/show_bug.cgi?id=768762
Some radio streams uses StreamTitle='' to reset the title after a
track stopped playing, e.g. while the host talks between tracks or
during news segments.
This change forces an empty tag object to be distributed if
StreamTitle or StreamUrl is received with empty value, thus allowing
downstream elements to get notified about this.
https://bugzilla.gnome.org/show_bug.cgi?id=778437
Add a new signal for formatting the filename, which receives
a GstSample containing the first buffer from the reference
stream that will be muxed into that file.
Useful for creating filenames that are based on the
running time or other attributes of the buffer.
To make it work, opening of files and setting filenames is
now deferred until there is some data to write to it,
which also requires some changes to how async state changes
and gap events are handled.
Now matroskamux mark all packets of audio-only streams as keyframes so
in test_block_group after pushing the test audio data 4 buffers are produced
and not more 2. The last buffer is the original data and must match with what
pushed. The remaining ones are matroskamux headers
https://bugzilla.gnome.org/show_bug.cgi?id=754696
* Changed PCMU->TEST for common macros
* Changed verify-functions (lost & rtx) into macros.
* Remove option to add marker-bit for test-buffers (not used anywhere)
* Add new push_test_buffer function that makes sure there are correlation
between dts and the time on the clock. (classic test-mistake)
* Established a generic starting-point for tests with the
construct_deterministic_initial_state function and use it where
applicable, which removes lots of "boilerplate" everywhere.
* Add basic lost-event test
* Remove as much "magic constants" as possible.
* Remove 3 tests that no longer are testing anything that others don't,
and was completely unmaintainable.
* Remove unnecessary use of the testclock
* Verify each test is testing what it actually says it does (and modify
where it doesn't)
In general, make the tests much smaller, better, more maintainable and
readable.
https://bugzilla.gnome.org/show_bug.cgi?id=774409
A new signal named on-bundled-ssrc is provided and can be
used by the application to redirect a stream to a different
GstRtpSession or to keep the RTX stream grouped within the
GstRtpSession of the same media type.
https://bugzilla.gnome.org/show_bug.cgi?id=772740
When doing rtx, the jitterbuffer will always add an rtx-timer for the next
sequence number.
In the case of the packet corresponding to that sequence number arriving,
that same timer will be reused, and simply moved on to wait for the
following sequence number etc.
Once an rtx-timer expires (after all retries), it will be rescheduled as
a lost-timer instead for the same sequence number.
Now, if this particular sequence-number now arrives (after the timer has
become a lost-timer), the reuse mechanism *should* now set a new
rtx-timer for the next sequence number, but the bug is that it does
not change the timer-type, and hence schedules a lost-timer for that
following sequence number, with the result that you will have a very
early lost-event for a packet that might still arrive, and you will
never be able to send any rtx for this packet.
Found by Erlend Graff - erlend@pexip.comhttps://bugzilla.gnome.org/show_bug.cgi?id=773891
The lost-event was using a different time-domain (dts) than the outgoing
buffers (pts). Given certain network-conditions these two would become
sufficiently different and the lost-event contained timestamp/duration
that was really wrong. As an example GstAudioDecoder could produce
a stream that jumps back and forth in time after receiving a lost-event.
The previous behavior calculated the pts (based on the rtptime) inside the
rtp_jitter_buffer_insert function, but now this functionality has been
refactored into a new function rtp_jitter_buffer_calculate_pts that is
called much earlier in the _chain function to make pts available to
various calculations that wrongly used dts previously
(like the lost-event).
There are however two calculations where using dts is the right thing to
do: calculating the receive-jitter and the rtx-round-trip-time, where the
arrival time of the buffer from the network is the right metric
(and is what dts in fact is today).
The patch also adds two tests regarding B-frames or the
“rtptime-going-backwards”-scenario, as there were some concerns that this
patch might break this behavior (which the tests shows it does not).
The new timeout is always going to be (timeout + delay), however, the
old behavior compared the current timeout to just (timeout), basically
being (delay) off.
This would happen if rtx-delay == rtx-retry-timeout, with the result that
a second rtx attempt for any buffers would be scheduled immediately instead
of after rtx-delay ms.
Simply calculate (new_timeout = timeout + delay) and then use that instead.
https://bugzilla.gnome.org/show_bug.cgi?id=773905
It's been broken for years, and it's unlikely it will ever
be fixed for collectpads/videomixer now that there's compositor
which works fine. So let's disable it, since all it does
is that it creates noise that distracts from other failures.
Also see the corresponding adder bug as it failed in the same way:
https://bugzilla.gnome.org/show_bug.cgi?id=708891
It seems that the forked processes all attempt to handle the listening
socket from the server, and only one has to shutdown the socket to break
the server completely.
Create a new server inside each test to avoid this.
https://bugzilla.gnome.org/show_bug.cgi?id=772656
The tests accumulate buffers in GstCheck's buffers list, and the list is
not (consistently) reset between tests. Do that and remove the now
conflicting unrefs for outbuffers.
https://bugzilla.gnome.org/show_bug.cgi?id=772644
Workaround source_root being the root directory of all projects in the subproject
case and remove now unneeded getpluginsdir
Bump meson requirement to 0.35
The basic idea is this:
1. For *larger* rtx-rtt, weigh a new measurement as before
2. For *smaller* rtx-rtt, be a bit more conservative and weigh a bit less
3. For very large measurements, consider them "outliers"
and count them a lot less
The idea being that reducing the rtx-rtt is much more harmful then
increasing it, since we don't want to be underestimating the rtt of the
network, and when using this number to estimate the latency you need for
you jitterbuffer, you would rather want it to be a bit larger then a bit
smaller, potentially losing rtx-packets. The "outlier-detector" is there
to prevent a single skewed measurement to affect the outcome too much.
On wireless networks, these are surprisingly common.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
Assuming equidistant packet spacing when that's not true leads to more
loss than necessary in the case of reordering and jitter. Typically this
is true for video where one frame often consists of multiple packets
with the same rtp timestamp. In this case it's better to assume that the
missing packets have the same timestamp as the last received packet, so
that the scheduled lost timer does not time out too early causing the
packets to be considered lost even though they may arrive in time.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
There is no need to schedule another EXPECTED timer if we're already
past the retry period. Under normal operation this won't happen, but if
there are more timers than the jitterbuffer is able to process in
real-time, scheduling more timers will just make the situation worse.
Instead, consider this packet as lost and move on. This scenario can
occur with high loss rate, low rtt and high configured latency.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
This patch fixes an issue with the estimated gap duration when there is
a gap immediately after a lost timer has been processed. Previously
there was a discrepancy beteen the gap in seqnum and gap in dts which
would cause wrong calculated duration. The issue would only be seen with
retranmission enabled since when it's disabled lost timers are only
created when a packet is received and the actual gap length and last dts
is known.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
Stats should also be collected for unsuccessful packets.
rtx-rtt is very important for determining the necessary configured
latency on the jitterbuffer. It's especially important to be able to
increase the latency when retransmitted packets arrive too late and are
considered lost. This patch includes these late packets in the
calculation of the various rtx stats, making them more correct and
useful.
Also in the case where the original packet arrives after a NACK is sent,
the received RTX packet should update the stats since it provides useful
information about RTT.
The RTT is only updated if and only if all requested retranmissions are
received. That way the RTT is guaranteed to make sense. If not we don't
know which request the packet is a response to and the RTT may be bogus.
A consequence of this patch is that RTT is not updated for a request
when one of the RTX packets for that seqnum is lost, but that since
measured RTT will be more accurate.
The implementation store the RTX information from the timed out timers
and use this when the retransmitted packet arrives. For performance
these timers are stored separately from the "normal" timers in order to
not impact performance (see attached performance test).
https://bugzilla.gnome.org/show_bug.cgi?id=769768
Under certain conditions gst_rtp_buffer_get_payload() returns a copy of
the payload. In this case the payload modifications will not affect the
rtp buffer. So instead of modifying the payload buffer directly we
should modify the buffer that actually gets pushed on the adapter.
The functionality of all the tests was kept exactly the same. Some tests
were renamed:
test_push_forward_seq -> test_rtxsend_rtxreceive
test_drop_one_sender -> test_rtxsend_rtxreceive_with_packet_loss
test_drop_multiple_sender -> test_multi_rtxsend_rtxreceive_with_packet_loss
test_rtxreceive_data_reconstruction was testing that retransmitted
buffer produced by rtxsend was correctly transformed to the original
buffer by rtxreceive. Now we are checking for this in all the tests
where both rtxsend & rtxreceive are involved. That's why the test was
removed.
https://github.com/mesonbuild/meson
With contributions from:
Tim-Philipp Müller <tim@centricular.com>
Jussi Pakkanen <jpakkane@gmail.com> (original port)
Highlights of the features provided are:
* Faster builds on Linux (~40-50% faster)
* The ability to build with MSVC on Windows
* Generate Visual Studio project files
* Generate XCode project files
* Much faster builds on Windows (on-par with Linux)
* Seriously fast configure and building on embedded
... and many more. For more details see:
http://blog.nirbheek.in/2016/05/gstreamer-and-meson-new-hope.htmlhttp://blog.nirbheek.in/2016/07/building-and-developing-gstreamer-using.html
Building with Meson should work on both Linux and Windows, but may
need a few more tweaks on other operating systems.
Need to set max-misorder-time and max-dropout-time to 0 so the
jitterbuffer does not base them on packet rate calculations.
If it does, out gap is big enough to be considered a new stream and
we wait for a few consecutive packets just to be sure
https://bugzilla.gnome.org/show_bug.cgi?id=751311
When parsing NAL unit type in codec_data, check the 6bits of
NAL_unit_type only and do not require the array_completeness bit to be
0, since the default and mandatory value of array_completeness is 1 for
hvc1.
https://bugzilla.gnome.org/show_bug.cgi?id=768653
Handle sprop-vps, sprop-sps and sprop-pps in caps instead of
sprop-parameter-sets.
rtph265pay works with byte-stream and hvc1 formats but not hev1 yet. It
handles profile-id, tier-flag and level-id in caps query.
https://bugzilla.gnome.org/show_bug.cgi?id=753760
This is to handle cases where upstream handles the fragmented streaming in TIME
segments and sends us data with gaps within fragments. This would happen when dealing
with trick-modes.
When upstream (push-based, TIME SEGMENT) wishes to send discontinuous samples,
it must obey the following rules:
* The buffer containing the [moof] must have a valid GST_BUFFER_OFFSET
* The buffers containing the first sample after a gap:
* MUST start at the beginning of a sample,
* MUST have the DISCONT flag set,
* MUST have a valid GST_BUFFER_OFFSET relative to the beginning of the fragment.
https://bugzilla.gnome.org/show_bug.cgi?id=767354
Some endpoints (like Tandberg E20) can send BYE packet containing our
internal SSRC. I this case we would detect SSRC collision and get rid
of the source at some point. But because we are still sending packets
with that SSRC the source will be recreated immediately.
This brand new internal source will not have some variables incorrectly
set in its state. For example 'seqnum-base` and `clock-rate` values will be
-1.
The fix is not to act on BYE RTCP if it contains internal or unknown
SSRC.
https://bugzilla.gnome.org/show_bug.cgi?id=762219
Keeping the lock while emitting the stats signal introduces potential
deadlock in those situations when the signal callback wants the access
to rtpsession's properties which also requre the lock.
https://bugzilla.gnome.org/show_bug.cgi?id=762216
Avoid using soup_server_run_async and old get_port() APIs,
replace with me soup_server_listen and get the port through the
URIs list returned from the server.
When a packet arrives that has already been considered lost as part of a
large gap the "lost timer" for this will be cancelled. If the remaining
packets of this large gap never arrives, there will be missing entries
in the queue and the loop function will keep waiting for these packets
to arrive and never push another packet, effectively stalling the
pipeline.
The proposed fix conciders parts of a large gap definitely lost (since
they are calculated from latency) and ignores the late arrivals.
In practice the issue is rare since large gaps are scheduled immediately,
and for the stall to happen the late arrival needs to be processed
before this times out.
https://bugzilla.gnome.org/show_bug.cgi?id=765933
In other words, gst_pad_get_current_caps should never return NULL
in a pad-added callback from the demuxer.
Added tests for the two special cases with AAC and H.264 where this
would happen every time.
https://bugzilla.gnome.org/show_bug.cgi?id=763780
Making the event itself writable is not enough, it won't make
the actual taglist in the event writable as well. Instead, just
make a copy of the taglist and then create a new tag event from
that if required, replacing the old one. Before we would
inadvertently modify taglists upstream elements might still
be holding on to. Add unit test for this as well.
https://bugzilla.gnome.org/show_bug.cgi?id=762793
Use fail_unless and friends instead of g_assert
Factor seq-num checking out to separate function
Check more return-values from push and crank and others
https://bugzilla.gnome.org/show_bug.cgi?id=762254
Set GSETTINGS_BACKEND=memory, apparently there's something
about fork() and the dconf backend (or whatever else that
drags in or activates) that messes up locking and causes
timeouts due to deadlocks in g_mutex_lock(), since
everything works fine with CK_FORK=no as well.
The code is supposed to follow somehow what the comment above says, that
is to have one channel with a wave of freq 440 and the other channel
with a wave of freq 880, but an off by one error results in frequencies
of 0 and 440.
https://bugzilla.gnome.org/show_bug.cgi?id=735673
This way we can use -1 as special value, which is nicer than MAXUINT.
This is backwards compatible even with the GValue API, as shown by
a unit test.
https://bugzilla.gnome.org/show_bug.cgi?id=757892
By not doing this, the muxer is not effectively a rtpmuxer, rather a
funnel, since it should be a single stream that exists the muxer.
If not specified, take the first ssrc seen on a sinkpad, allowing upstream
to decide ssrc in "passthrough" with only one sinkpad.
Also, let downstream ssrc overrule internal configured one
We hence has the following order for determining the ssrc used by
rtpmux:
0. Suggestion from GstRTPCollision event
1. Downstream caps
2. ssrc-Property
3. (First) upstream caps containing ssrc
4. Randomly generated
https://bugzilla.gnome.org/show_bug.cgi?id=752694
Avoid using default accept-caps handler that will query downstream
and is more expensive. Just check if the caps is compatible with
the template and check if the channels are the same.
The time of the first RTCP packet is semi-random, so
sometimes it was produced before enough packets from
the second SSRC were received. First drop queued RTCP
packets, then advance the clock enough to ensure
that at least one new RTCP packet is produced.
https://bugzilla.gnome.org/show_bug.cgi?id=750731
The accept-caps query just does a shallow check at the current
element while at this test we want it to also look at downstream.
So use caps query there.
https://bugzilla.gnome.org/show_bug.cgi?id=753623
1) Tests that using dynamic PT instead of the default ones work
2) If we ever decide to change the codec here we don't need to
worry about change the PT for the default one of the new codec
in the test
https://bugzilla.gnome.org/show_bug.cgi?id=746445
The RTP PT for alaw is 8.
Less than 50 packets are received in the length of this test so it
would never drop a buffer or would drop only the last buffer and
it would fail sometimes when the received wouldn't receive the
retransmission packet in time.
https://bugzilla.gnome.org/show_bug.cgi?id=746445
Some of the subtitle chunks will have embedded
NUL-terminators (last three), some don't (first three),
some will have markup, some won't, some will be valid
UTF-8 (all but last), some won't (last stanza).
https://bugzilla.gnome.org/show_bug.cgi?id=752421
Replace static constants with macros to make gcc happy
CC elements/elements_rtpjitterbuffer-rtpjitterbuffer.o
elements/rtpjitterbuffer.c:387:1: error: initializer element is not constant
static const GstClockTime PCMU_BUF_DURATION = PCMU_BUF_MS * GST_MSECOND;
^
elements/rtpjitterbuffer.c:388:1: error: initializer element is not constant
static const guint PCMU_BUF_SIZE = 64000 * PCMU_BUF_MS / 1000;
^
elements/rtpjitterbuffer.c:390:5: error: initializer element is not constant
PCMU_BUF_CLOCK_RATE * PCMU_BUF_MS / 1000;
The amount of time that is completely expired and not worth waiting for,
is the duration of the packets in the gap (gap * duration) - the
latency (size) of the jitterbuffer (priv->latency_ns). This is the duration
that we make a "multi-lost" packet for.
The "late" concept made some sense in 0.10 as it reflected that a buffer
coming in had not been waited for at all, but had a timestamp that was
outside the jitterbuffer to wait for. With the rewrite of the waiting
(timeout) mechanism in 1.0, this no longer makes any sense, and the
variable no longer reflects anything meaningful (num > 0 is useless,
the duration is what matters)
Fixed up the tests that had been slightly modified in 1.0 to allow faulty
behavior to sneak in, and port some of them to use GstHarness.
https://bugzilla.gnome.org/show_bug.cgi?id=738363
Also make it so that the mtu is always set if specified, not
only in case of the rather weird bufferlist test code path.
This allows us to easily make the payloader fragment a payload
across multiple output packets by setting a small MTU on it.
Implementation according to RFC 4587.
Payloader create fragments on MB boundaries in order to match MTU size
the best it can. Some decoders/depayloaders in the wild are very strict
about receiving a continuous bit-stream (e.g. no no-op bits between
frames), so the payloader will shift the compressed bit-stream of a
frame to align with the last significant bit of the previous frame.
Depayloader does not try to be fancy in case of packet loss. It simply
drops all packets for a frame if there is a loss, keeping it simple.
https://bugzilla.gnome.org/show_bug.cgi?id=751886
If we have a clock, update "now" now with the very latest running time we have.
If timers are unscheduled below we otherwise wouldn't update now (it's only updated
when timers expire), and also for the very first loop iteration now would otherwise
always be 0.
Also the time is used for the timeout functions, e.g. to calculate any times
for the next timeouts and we would otherwise pass too old times there.
https://bugzilla.gnome.org/show_bug.cgi?id=751636
The mp4 muxer now writes a place-holder mdat as a free
atom followed by a 0-byte mdat that covers the rest of the
file, making it possible to rewrite it as 64-bit, or leave
it as-is if nothing else is written afterward
The calculations were a bit off everywhere, even before the changes done
recently to the delay for RTX of expected future packets. It only worked by
accident, but now the calculations are all correct again. Hopefully.
Both input streams in this test have a segment.start = 10s, so
output should start from 0 anyway.
Another test has both starting at non-0 segments, but the running
time of both streams should still start from 0
Commit #1018aa made rtprtxsend handle buffer lists, breaking
the test which probes for buffers, but not buffer lists.
Use a utility function to run the probe callback on each buffer
in the list in turn and remove any buffers that are dropped.
When not in fast-start or fragmented mode, we need to be able
to rewrite the size of the mdat atom, or else the output just
won't be playable - the mdat placeholder with size == 0 will
cover the rest of the file, including any moov atom we write out.
https://bugzilla.gnome.org/show_bug.cgi?id=708808
The test had a function to print the error, but was not parsing it.
This was causing warning about dbg_info being used uninitialized. If
the test was testing any errors, this would have crashed.
Implement 2 new elements - splitmuxsink and splitmuxsrc.
splitmuxsink is a bin which wraps a muxer and takes 1 video stream,
plus audio/subtitle streams, and starts a new file
whenever necessary to avoid overrunning a threshold of either bytes
or time. New files are started at a keyframe, and corresponding audio
and subtitle streams are split at packet boundaries to match
video GOP timestamps.
splitmuxsrc is a corresponding source element which handles
the splitmux:// URL and plays back all component files,
reconstructing the original elementary streams as it goes.
Our ones were expired. The new ones were copied from libsoup's
tests files.
Also sets the property to use our own cert to validate the
server, otherwise the default system certs would be used
and it would fail.
They should always be built, while the speex elements are not.
Need to check for a smaller number of buffers then (7->4) because
speexenc will add 3 header buffers while alawenc will just output
as many buffers as it receives as input.
https://bugzilla.gnome.org/show_bug.cgi?id=742098
rtpmux behaves like a funnel in that it forwards whatever upstream is
sending buffers. So setting proxy caps doesn't make sense as the
upstream don't have to have compatible caps, thus resulting in an empty
caps set as a result of a caps query. Instead set fixed caps just
as funnel does.
https://bugzilla.gnome.org/show_bug.cgi?id=738722
Actually look for error messages on the bus and fail if there
is one before the EOS message. Disable pull mode test which is
pointless as long as matroskaparse only supports push mode
(pull mode support has not been ported over to 1.0).