Otherwise each bin might have a different latency in the end, causing
synchronization problems.
The bin will still first handle latency internally as before, but gives the
overall pipeline the opportunity to update the latency of the whole pipeline
afterwards.
https://bugzilla.gnome.org/show_bug.cgi?id=759125
The pad could be activated but flushing because of a FLUSH_START event. That's
not what we're looking for here, we want to check for activated pads.
https://bugzilla.gnome.org/show_bug.cgi?id=758928
This is useful for feature that are produced after probing a specific
node. You want to reload this plugin if the specific node(s) have been
removed, added, or reloaded.
https://bugzilla.gnome.org/show_bug.cgi?id=758080
In plugin is responsible for calculating a hash of the dependencies
in order to determine if the cache should be invalidated or not.
Currently, the hash combining method removes a bit of the original
have before combining with an addition. As we use 32bits for our hash
and shift 1 bit for each file and directory, that resulting hash only
account for the last 32 files. And is more affected by the last file.
Rotating technique (shifting, and adding back the ending bit), can be
use to make the addition non-commutative. In a way that different order
gives different hashes. In this case, I don't preserve this behaviour
because the order in which the files are provided by the OS is
irrelevant.
In most cases, the XOR operation is used to combine hashes. In this
code we use the addition. I decided to preserve the addition because
we make use of non-random hash ((guint) -1) in the algorithm for
matching files that are not really part of the hash (symlinks, special
files). Doing successive XOR on this value, will simply switch from
full ones, to full zero. The XOR used with whitelist has been preserved
as it's based on a fairly randomized hash (g_str_hash).
https://bugzilla.gnome.org/show_bug.cgi?id=758078
On iOS/OSX g_get_current_time was used by default. However, mach_time is
the preferred high-resolution monotonic clock to be used on Apple
platforms.
https://bugzilla.gnome.org/show_bug.cgi?id=758012
Helps catching when a state change is starting and ending.
It is also possible to track the end of state changes by checking the
async-done or state-change messages.
This is particularly important for elements that do async state changes.
Validate that the proxy pad indeed accepts the caps by also
comparing with the pad template caps, otherwise when the pad
had no internally linked pads it would always return true.
https://bugzilla.gnome.org/show_bug.cgi?id=754112
Instead of re-sending sticky events over and over to a not-linked
pad, mark them as sent the first time. If the not-linked came from
downstream, it already received the events. If the pad is actually
not-linked, the sticky events will be rescheduled when the
pad is linked anyway.
There is a similar explanation in gst_caps_make_writable, but the existing
documentation can be misleading since it does not define what 'is already
writable' means.
Also note when this function is meant to be used.
API: GST_BUFFER_DTS_OR_PTS
Many scenarios/elements require dealing with streams of buffers that
might have DTS set (i.e. encoded data, potentially reordered)
To simplify getting the increasing "timestamp" of those buffers, create
a macro that will return the DTS if valid, and if not the PTS
Updated gst_segment_position_from_stream_time and gst_segment_to_stream_time to reflect correct calculations for the case when the applied rate is negative.
Pasting from design docs:
===============================
Stream time is calculated using the buffer times and the preceding SEGMENT
event as follows:
stream_time = (B.timestamp - S.start) * ABS (S.applied_rate) + S.time
For negative rates, B.timestamp will go backwards from S.stop to S.start,
making the stream time go backwards.
===============================
Therefore, the calculation for applied_rate < 0 should be:
stream_time = (S.stop - B.timestamp) * ABS (S.applied_rate) + S.time
and the reverse:
B.timestamp = S.stop - (stream_time - S.time) / ABS (S.applied_rate)
https://bugzilla.gnome.org/show_bug.cgi?id=756810
An ASYNC READY->PAUSED might have failed without the bin code noticing during
the state change, in which case we will never get PAUSED->READY and would leak
messages.
https://bugzilla.gnome.org/show_bug.cgi?id=756611