This reverts commit dcd3ce9751.
This functionality was implemented for gstopenwebrtc, but it
turned out this was not actually needed for webrtc bundling
support, as shown in webrtcbin. It also doesn't correspond
to any standards.
This is an API break, but nothing should actually depend on
this, at least not for its initial purpose.
Changes in rtpbin.c were reverted manually, to preserve some
refactoring that had occurred in the original commit.
Fixes#537
When the EOS event is received, run all timers immediately and avoid
pushing the EOS downstream before this has been run. This ensures that
the lost packet statistics are accurate.
After EOS is received, it is pointless to wait for further events,
specially waiting on timers. This patches fixes two cases where we could
wait instead of returning GST_FLOW_EOS and trigger a spin of the loop
function when EOS is queued, regardless if this EOS is the queue head or
not.
This is an extra internal recurisve lock use to avoid having to take
both sink pad streams lock all the time. This patch renamed it
INTERLNAL_STREAM_LOCK/UNLOCK() to avoid confusion with possible upstream
GST_PAD API.
This reverts "6f3734c305 rtpssrcdemux: Only forward stick events while
holding the sinkpad stream lock" and actually hold on the internal
stream lock. This prevents in some needed case having a second
streaming thread poping in and messing up event ordering.
While forwarding serialized event, we use gst_pad_forward() function.
In the forward callback (GstPadForwardFunction) we always return
TRUE. Returning true there will stop the dispatching procedure. As a
side effect, only one events is receiving the events. This breaks
when sending EOS from the applicaiton, it also breaks the latency
tracer.
Reset RTPSession when rtpsession changes state from PAUSED to READY.
Without this change, a stored last_rtptime in RTPSource could interfere
with RTP timestamp generation in RTCP Sender Report.
Fixes#510
Always wait with starting the RTCP thread until either a RTP or RTCP
packet is sent or received. Special handling is needed to make sure the
RTCP thread is started when requesting an early RTCP packet.
We want to wait with starting the RTCP thread until it's needed in order
to not send RTCP packets for an inactive source.
https://bugzilla.gnome.org/show_bug.cgi?id=795139
The code before copied GstStructure twice. The first time inside
gst_value_set_structure and the second time in g_value_array_append.
Optimized version does no copies, just transfers ownership to
GValueArray. It takes advantage of the fact that array has already
enough elements preallocated and the memory is zero initialized.
https://bugzilla.gnome.org/show_bug.cgi?id=795139
If obtain_internal_source() returns a source that is not internal it
means there exists a non-internal source with the same ssrc. Such an
ssrc collision should be handled by sending a GstRTPCollision event
upstream and choose a new ssrc, but for now we simply drop the packet.
Trying to process the packet further will cause it to be pushed
usptream (!) since the source is not internal (see source_push_rtp()).
https://bugzilla.gnome.org/show_bug.cgi?id=795139
If there is an external source which is about to timeout and be removed
from the source hashtable and we receive feedback RTCP packet with the
media ssrc of the source, we unlock the session in
rtp_session_process_feedback before emitting 'on-feedback-rtcp' signal
allowing rtcp timer to kick in and grab the lock. It will get rid of
the source and rtp_session_process_feedback will be left with RTPSource
with ref count 0.
The fix is to grab the ref to the RTPSource object in
rtp_session_process_feedback.
https://bugzilla.gnome.org/show_bug.cgi?id=795139
These are the sources we send from, so there is no reason to
report receive statistics for them (as we do not receive on them,
and the remote side has no knowledge of them).
https://bugzilla.gnome.org/show_bug.cgi?id=795139
The code responsible for creating retransmitted buffers
assumed the stored buffer had been created with
rtp_buffer_new_allocate when copying the extension data,
which isn't necessarily the case, for example when
the rtp buffers come from a udpsrc.
https://bugzilla.gnome.org/show_bug.cgi?id=794958
Similar to the get-session and get-internal-session signals,
we expose a get-storage signal in addition to the
get-internal-storage signal to give access to the actual
element for applications that need to set properties on the
element, in particular "size-time"
https://bugzilla.gnome.org/show_bug.cgi?id=794910
Packets with these payload types will be dropped. A use case
for this is FEC, where we want FEC packets to go through the
jitterbuffer, but not be output by rtpbin.
https://bugzilla.gnome.org/show_bug.cgi?id=792696
When the signal returns a floating reference, as its return type
is transfer full, we need to sink it ourselves before passing
it to gst_bin_add (which is transfer floating).
This allows us to unref it in bin_remove_element later on, and
thus to also release the reference we now own if the signal
returns a non-floating reference as well.
As we now still hold a reference to the element when removing it,
we also need to lock its state and setting it to NULL before
unreffing it
Also update the request_aux_sender test.
https://bugzilla.gnome.org/show_bug.cgi?id=792543
When XR packet is detected, warning message leads to misunderstandings.
Until RFC3611 is implemented in gst-plugins-base, the level needs to
be downgraded to avoid confusion.
https://bugzilla.gnome.org/show_bug.cgi?id=789746