Introduce GST_USE_NV_STATELESS_CODEC environment to allow user to select
primary nvidia decoder implementation. In case the environment
GST_USE_NV_STATELESS_CODEC=h264 was set, old nvidia h264 decoder element
will not be registered. Instead, both nvh264dec and nvh264sldec
factory name will create gstcodecs based new nvidia h264 decoder element.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1198>
Introduce GstH264Decoder based Nvidia H.264 decoder element.
Similar the element factory name of to v4l2 stateless codec,
this element can be configured with factory name "gstnvh264sldec".
Note that "sl" in the name stands for "stateless"
For now, existing nvh264dec covers more profile and formats
(e.g., interlaced stream) than this implementation.
However, this implementation allows us to control lower level
parameters such as decoded picture buffer management and therefore
we can get a chance to improve performance in terms of latency.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/1198>
Too many decode surface would waste GPU memory. Also it seems to be
introducing additional latency depending on stream. Since nvcodec
sdk version 9.0, CUVID parser API has been providing the minimum
required number of surface. By using it, we can save GPU memory
and reduce possible latency.
By adding system memory support for nvdec, both en/decoder
in the nvcodec plugin are able to be usable regardless of
OpenGL dependency. Besides, the direct use of system memory
might have less overhead than OpenGL memory depending on use cases.
(e.g., transcoding using S/W encoder)
Any plugin which returned FALSE from plugin_init will be blacklisted
so the plugin will be unusable even if an user install required runtime
dependency next time. So that's the reason why nvcodec returns TRUE always.
This commit is to remove possible misreading code.
By this commit, each codec has its own element factory so the
nvdec element factory is removed. Also, if there are more than one device,
additional nvdec element factory will be created per
device like nvh264device{device-id}dec, so that the element factory
can expose the exact capability of the device for the codec.
... and put them into new nvcodec plugin.
* nvcodec plugin
Now each nvenc and nvdec element is moved to be a part of nvcodec plugin
for better interoperability.
Additionally, cuda runtime API header dependencies
(i.e., cuda_runtime_api.h and cuda_gl_interop.h) are removed.
Note that cuda runtime APIs have prefix "cuda". Since 1.16 release with
Windows support, only "cuda.h" and "cudaGL.h" dependent symbols have
been used except for some defined types. However, those types could be
replaced with other types which were defined by "cuda.h".
* dynamic library loading
CUDA library will be opened with g_module_open() instead of build-time linking.
On Windows, nvcuda.dll is installed to system path by CUDA Toolkit
installer, and on *nix, user should ensure that libcuda.so.1 can be
loadable (i.e., via LD_LIBRARY_PATH or default dlopen path)
Therefore, NVIDIA_VIDEO_CODEC_SDK_PATH env build time dependency for Windows
is removed.