When shutting down the chain, we can get a deadlock when removing
a pad, if that chain was being busy streaming but blocked (eg, while
waiting for a queue to have free space).
https://bugzilla.gnome.org/show_bug.cgi?id=746480
memcmp will blindly compare the reserved fields, as well as any
padding the compiler may choose to sprinkle in GstSegment.
Fixes valgrind complaints in unit tests, as well as some found via
https://bugzilla.gnome.org/show_bug.cgi?id=738216
A previous patch increased allocations by 15 bytes in order to ensure
16 byte alignment for g_malloc blocks. However, shared memory is
already block aligned, and this extra 15 bytes caused allocation
to fail when we were already allocating to the shared memory limit,
which is a lot smaller than typical available RAM.
Fix this by removing the alignment slack when allocating shared
memory.
https://bugzilla.gnome.org/show_bug.cgi?id=706066
A previous patch increased allocations by 15 bytes in order to ensure
16 byte alignment for g_malloc blocks. However, shared memory is
already block aligned, and this extra 15 bytes is not needed. Since
shared memory limits are low compared to RAM, we remove this waste.
https://bugzilla.gnome.org/show_bug.cgi?id=727236
In case upstream does not provide videorate with framerate information,
it will detect the current framerate from the buffer it received,
but if downstream forces the use of variable framerate (most probably
through the use of a caps filter with framerate = 0 / 1), videorate will
respect that.
And add some unit tests
https://bugzilla.gnome.org/show_bug.cgi?id=734424
In the case the framerate is variable (represented by framerate=0/1),
we currently end up loop pushing the first buffer and then recompute
diff1 and diff2 without updating the videorate->next_ts at all
leading to infinitely looping pushing that first buffer.
In the case of variable framerate, we should just compute the next_ts
as previous_pts + previous_duration.
https://bugzilla.gnome.org/show_bug.cgi?id=734424
The patch calculates a second channel mixing matrix from the current one. The
matrix contains the original values * (2^10) as integers. This matrix is used
when integer-formatted channels are mixed.
On a ARM Cortex-A8, single core, 800MHz this improves performance in a
testcase from 29s to 9s for downmixing 6 channels to stereo.
https://bugzilla.gnome.org/show_bug.cgi?id=747005
The spec for this does not say nor imply how this should be
interpreted. The previous code would try to shift by 64 bits,
which is undefined.
Coverity 1195119
https://bugzilla.gnome.org/show_bug.cgi?id=727955
When generating segment, we can't assume the first buffer is actually
the first expected one. If it's not, we need to adjust the segment to
start a bit before.
Additionally, we if don't know when the stream is suppose to have
started (no clock-base in caps), it means we need to keep everything in
running time and only rely on jitterbuffer to synchronize.
https://bugzilla.gnome.org/show_bug.cgi?id=635701
If a new pad is added after playbin has been put to READY/NULL it
should ignore new pads as it is shutting down.
This can happen when the pipeline fails to preroll (is still in READY)
and the user gives up on waiting or an error that doesn't reach
the demuxer occurs (on some event handling) and it will continue to
work and exposing pads while playbin has been put to NULL.
Without this check an input-selector is created and set to PAUSED
state, preventing playbin from properly shutting down in case it
has data blocked inside it.
audio_convert_convert unpacks to default format (signed) before calling
quantize, and the unsigned variants were equivalent to signed anyway,
so we just get rid of them.
Since range size is always 2^n, we can simply use modulo (implemented
with a bitmask).
The previous implementation used 64-bit integer division, which is
done in software on ARMv7. Although the divisor was constant, the
division could not be transformed into "multiplication by magic number"
since the dividend was 64-bit.
The now-unused and not-so-fast gst_fast_random_(u)int32_range functions
were removed.
Also, implementing bug fixes:
1) ADD_DITHER_TPDF_HF_I no longer discards bias.
2) We change TPDF's noise range to be the same as RPDF's. Previously,
RPDF's noise ranged:
{ bias - dither, bias + dither }
while TPDF's noise ranged:
{ bias/2 - dither/2, bias/2 + dither/2 - 1 } +
{ bias/2 - dither/2, bias/2 + dither/2 - 1 } =
{ bias - dither, bias + dither - 2 }
Now, both range:
{ bias - dither, bias + dither - 1 }
https://bugzilla.gnome.org/show_bug.cgi?id=746661
This fixes a race where the use-buffering property on a multiqueue was
set before the queue depth was changed from it's high preroll limits to
lower playback limits. This resulted in buffering messages being emitted
by the multiqueue in the short window between use-buffering being
set and the queue depth being reset.
https://bugzilla.gnome.org/show_bug.cgi?id=744308
gstoggdemux.c:1233:11: error: format specifies type 'long' but the argument has type 'ogg_int64_t' (aka 'long long') [-Werror,-Wformat]
granule);
^~~~~~~
https://bugzilla.gnome.org/show_bug.cgi?id=746512
Make a base class that can help with allocating fd-backed memory.
Make dmabuf extend from the base class.
We can now make methods to check if memory has an fd and get the fd for
all the different types of fd-backed memory.
The code that was calculating the start granule from packet durations
was interpreting a negative value as an error, but this is actually a
valid case, to indicate clipping of data at start.
https://bugzilla.gnome.org/show_bug.cgi?id=743900
Make a separate file for the code to handle the fd backed memory.
This would make it possible later to add other allocators also using
fd backed memory.
The variables could have changed when the lock was released
to push a gap event. Streamsynchronizer needs to check them
again before going to sleep.
Bonus: fix a comment typo