When we make a mapping between an RTP timestamp and an NTP timestamp, include
the downstream latency applied to the sinks. This makes it possible to have
both sinks run with different latencies and still have correct sync on the
client. It also is more correct because the RTP timestamp in the SR report will
actually correspond more closely to the NTP time it was sent on the server.
For pipelines with high latency on the sender side, this actually allows a
GStreamer receiver to perform synchronisation instead of dropping the RTCP
packets.
There is no need to cast the event functions and only causes problems later when
we change the signature later and things silently compiles wrong code.
Inform the source when caps changed. This was removed in the port to 1.0
leaving the source unaware of the clock-rate and unable to interpollate
rtp timestamps for SR packets.
When use-pipeline-clock is set, use the running-time of the
pipeline to calculate the NTP timestamps. This method would previously
only work when the base-time is set to 0 but with this change it can
also work with different offsets and we can also implement pause/resume
of the sender and receiver now.
Add private replacements for deprecated functions such as
g_mutex_new(), g_mutex_free(), g_cond_new() etc., mostly
to avoid the deprecation warnings. We'll change these
over to the new API once we depend on glib >= 2.32.
* use G_DEFINE_TYPE
* adjust to new GstBuffer and corresponding rtp and rtcp buffer interfaces
* misc caps and segment handling changes
FIXME: also relies on being able to pass caps along with a buffer,
which has no evident equivalent yet, so that either needs one,
or still needs quite some code path modification to drag along caps.
GCC 4.6.x spits warnings about variables that are unused but set. Such
variables have been removed where trivial but with comments left behind
for informational purposes in some cases.
gst_rtp_session_chain_recv_rtcp () was changed in commit 490113d4
to always return GST_FLOW_OK instead of the return value of
rtp_session_process_rtcp (), so we'll keep it that way.
1) We need to lock and get a strong ref to the parent, if still there.
2) If it has gone away, we need to handle that gracefully.
This is necessary in order to safely modify a running pipeline. Has been
observed when a streaming thread is doing a buffer_alloc() while an
application thread sends an event on a pad further downstream, and from
within a pad probe (holding STREAM_LOCK) carries out the pipeline plumbing
while the streaming thread has its buffer_alloc() in progress.