We've been using NvEncodeAPICreateInstance method to find the supported API
version, but that seems to be insufficient since there is a case
where plugin failed in opening encoding session even if NvEncodeAPICreateInstance
succeeded. Asking driver about the version would be the most certain way.
Hard-coded 16x16 resolution is likely to differ from the device's support
in most cases. If we can use NV_ENC_CAPS_WIDTH_MIN and NV_ENC_CAPS_HEIGHT_MIN,
update pad template with returned value.
New rate-control modes are introduced (if device can support)
* cbr-ld-hr: CBR low-delay high quality
* cbr-hq: CBR high quality
* vbr-hq: VBR high quality
Also, various configurable rate-control related properties are added.
Introducing new dynamic class between GstNvBaseEncClass and
each subclass to be able to access device specific properties and
capabilities from each subclass implementation side.
... and add support CUDA context sharing similar to glcontext sharing.
Multiple CUDA context per GPU is not the best practice. The context
sharing method is very similar to that of glcontext. The difference
is that there can be multiple context object on a pipeline since
the CUDA context is created per GPU id. For example, a pipeline
has nvh264dec (uses GPU #0) and nvh264device0dec (uses GPU #1),
then two CUDA context will propagated to all pipeline.
Any plugin which returned FALSE from plugin_init will be blacklisted
so the plugin will be unusable even if an user install required runtime
dependency next time. So that's the reason why nvcodec returns TRUE always.
This commit is to remove possible misreading code.
Since we build nvcodec plugin without external CUDA dependency,
CUDA and en/decoder library loading failure can be natural behavior.
Emit error only when the module was opend but required symbols are missing.
* By this commit, if there are more than one device,
nvenc element factory will be created per
device like nvh264device{device-id}enc and nvh265device{device-id}enc
in addition to nvh264enc and nvh265enc, so that the element factory
can expose the exact capability of the device for the codec.
* Each element factory will have fixed cuda-device-id
which is determined during plugin initialization
depending on the capability of corresponding device.
(e.g., when only the second device can encode h265 among two GPU,
then nvh265enc will choose "1" (zero-based numbering)
as it's target cuda-device-id. As we have element factory
per GPU device, "cuda-device-id" property is changed to read-only.
* nvh265enc gains ability to encoding
4:4:4 8bits, 4:2:0 10 bits formats and up to 8K resolution
depending on device capability.
Additionally, I420 GLMemory input is supported by nvenc.
... and put them into new nvcodec plugin.
* nvcodec plugin
Now each nvenc and nvdec element is moved to be a part of nvcodec plugin
for better interoperability.
Additionally, cuda runtime API header dependencies
(i.e., cuda_runtime_api.h and cuda_gl_interop.h) are removed.
Note that cuda runtime APIs have prefix "cuda". Since 1.16 release with
Windows support, only "cuda.h" and "cudaGL.h" dependent symbols have
been used except for some defined types. However, those types could be
replaced with other types which were defined by "cuda.h".
* dynamic library loading
CUDA library will be opened with g_module_open() instead of build-time linking.
On Windows, nvcuda.dll is installed to system path by CUDA Toolkit
installer, and on *nix, user should ensure that libcuda.so.1 can be
loadable (i.e., via LD_LIBRARY_PATH or default dlopen path)
Therefore, NVIDIA_VIDEO_CODEC_SDK_PATH env build time dependency for Windows
is removed.