The old default timescale of 1 millisecond produces irrational
numbers for a lot of framerate/audio-packet-duration multiples.
1/1800 is a nicer number, as it tends to produce better fractions
and therefore slightly higher accuracy overall
Change the way the output framerate is calculated
to ignore the first sample (which is sometimes truncated
in my testing) and use the new gst_video_guess_framerate()
function to recognise common standard framerates better.
Remove the code that was sorting the first 20 sample
durations and then ignoring the result.
This makes sense in DASH reverse playback, where the upstream dashdemux
will download DASH segments in reverse order, but push their buffers
forward to qtdemux and mark each segment start as DISCONT. This needs
to be forwarded downstream to the parser/decoder, otherwise it won't work.
https://bugzilla.gnome.org/show_bug.cgi?id=734443
When writing out a trak with an edit list, make sure the
overall file duration is also updated to reflect the
lengthening of the stream.
Add some more debug to qtdemux to warn about streams that
are longer than the file and get truncated.
Handle the transformation matrix cases where there are only simple rotations
(90, 180 or 270 degrees) and use a tag for those cases. This is a common scenario
when recording with mobile devices
https://bugzilla.gnome.org/show_bug.cgi?id=679522
They are very confusing for people, and more often than not
also just not very accurate. Seeing 'last reviewed: 2005' in
your docs is not very confidence-inspiring. Let's just remove
those comments.
It was used in the past in 0.10 when there was no explicit DTS
field in buffers, now we have it in 1.x series and we can
check it directly with GST_BUFFER_DTS_IS_VALID
Do not try to use subsequent buffer timestamps to calculate
sparse streams durations because the stream is sparse and
the buffers might not be 'time adjacent'. So rely on the
duration and give the option to the pad to provide
custom 'empty' buffers to represent the gaps in the
stream, this can vary on how the data is represented.
Right now, the only sparse stream supported is tx3g subtitles.
Make sure empty segments are used and pushed with a gap event
to represent its data (or lack of it)
Each QtSegment is mapped into a GstSegment with the corresponding
media range. For empty QtSegments a gap event is pushed instead
of GstBuffers and it advances to the next QtSegment.
To make this work with seeks, need to keep track of the starting
'base' to make sure it remains consistently increasing when
pushing new segment events.
For example: if a seek makes qtdemux start from 5s, the first
segment will have a base=0. When the next segment is activated,
its base time will be QtSegment.time - qtdemux.segment_base so
that it doesn't include the first 5s that weren't played and
shouldn't be accounted on the running time
This purposedly will remove the fix made for
https://bugzilla.gnome.org/show_bug.cgi?id=700264, at this
point it was decided to respect the gaps, even if they cause
a delay on playback, because that's the way the file was crafted.
https://bugzilla.gnome.org/show_bug.cgi?id=345830
Mov spec says it uses a pascal style string, while isomedia uses
a null terminated one. Store the current atoms flavor into the HDLR
to be able to generate the correct output.
https://bugzilla.gnome.org/show_bug.cgi?id=705982
Make it clear what should be handled purely by mss mode:
1) Expose the streams on the first moof as there are no moov atoms
2) Properly cleanup streams on flushes
Add a note about the meaning of upstream_newsegment and mss_mode
for future reference.
Make all other special fragment handling shared for both dash
and mss streams.
In a fragmented scenario, qtdemux is operating in push mode
and it gets a fragmented buffer. While processing its data
downstream gets unlinked (or a input-selector changes its
active pad and returns not-linked). Qtdemux stops processing
this fragment and returns not-linked upstream, leaving the
remaining data in its adapter.
When it gets an EOS it should make sure that all the data it
had received is pushed before pushing EOS.
Some buffers can have multiple moov atoms inside and the strategy
of using the gst_adapter_prev_pts timestamp to get the base timestamp
for the media of the fragment would fail as it would reuse the same
base timestamp for all moofs in the buffer instead of accumulating
the durations for all of them.
Heres a better explanation of the issue:
qtdemux receives a buffer where PTS(buf) = X
buf -> moofA | moofB | moofC
The problem was that PTS(buf) was used as the base timestamp for
all 3 moofs, causing all buffers to be X based. In this case we want
only moofA to be X based as it is what the PTS on buf means, and the
other moofB and moofC just use the accumulated timestamp from the
previous moofs durations.
To solve this, this patch uses gst_adapter_prev_pts distance
result, this allows qtdemux to calculate if it should use the
resulting pts or just accumulate the samples as it can identify
if the moofs belong to the same upstream buffer or not.
https://bugzilla.gnome.org/show_bug.cgi?id=719783
In SmoothStreaming fragmented scenario, the timestamps are calculated
starting from the fragment buffer timestamp. When there is a not-linked
return from downstream, qtdemux will return upstream and will keep the
non-pushed data into its adapter.
On a new fragment buffer pushed to qtdemux, the new buffer timestamp
would overwrite the previous one that should be used on the still
to be pushed buffers. Because of this, this patch will also
update the fragment_start timestamp from the adapter last pts
to make sure the moof and timestamps are in sync and will result
in correct timestamps for all fragments.