In order to allow for proper functionality when a decoder only supports
one instance at a time (dsp), we must block the demuxer pads when they
get created if they are not part of the active group, preventing buffers
from being sent to the decoder (and initializing it through setcaps),
then after we switch to a new group, we unblock the demuxer pads for
the active groups. In the callback for the unblock, we prune the old
groups, making sure the previous decoder instance is destroyed before
we push a buffer to the new instance.
... to also properly indicate chain's endpad if no elements are in the
chain (due to the endpad being a raw demuxer pad, or one setup without
decoders since uridecodebin or higher up decided not to need those).
Add private replacements for deprecated functions such as
g_mutex_new(), g_mutex_free(), g_cond_new() etc., mostly
to avoid the deprecation warnings. We'll change these
over to the new API once we depend on glib >= 2.32.
Replace g_thread_create() with g_thread_try_new().
After preroll the multiqueue limits are still set to the preroll
limits if use-buffering is set to TRUE. In that case we only want
time limits on the multiqueue if upstream is seekable.
Such streams were detected as seekable, as the query on the typefind
element was testing the m3u8 file listing the actual streams, and
not going through the demuxer(s).
We now check for seekability for each multiqueue following a demuxer,
so the query will flow through the elements which might prevent seeking.
https://bugzilla.gnome.org/show_bug.cgi?id=647769
This allows us to easily get ahold of all pads on a stream-topology message, including
pre-decoder ones, while "pad" only gives us access to the raw pads (as used by discoverer).
This is made possible by filtering errors. This is required to let
harware accelerated element query the video context. The video context
is used to determine if the HW is capable, and thus if the element is
supported or not.
Fixes bug #662330.
With unfixed caps we can't reliably decide if the final caps
are going to be "raw" (e.g. supported by a sink) or not.
We will get here again later when the caps are fixed.
If subdrained isn't initialized to FALSE then a chain might think
that its group is drained when in fact it's not and this can cause
a switch too early or even cause a deadlock.
g_value_get_object() does not give us our own ref.
Fixes "Trying to dispose object "flacparse", but it still has a parent "registry0".
You need to let the parent manage the object instead of unreffing the object directly."
and similar warnings.
https://bugzilla.gnome.org/show_bug.cgi?id=658416
This is done by adding a capsfilter after every parser/converter that contains
all possible caps supported by downstream elements. A capsfilter is necessary
here because the decoder is only selected after the parser selected a format
and the parser can't know what downstream would support otherwise.
When we have a multi-stream (i.e. audio and video) input and the demuxer
adds/removes pads for a new stream (common in a mpeg-ts stream when the
program stream mapping is updated), the algorithm for EOS handling was
previously wrong (it would only drop the EOS of the *last* pad but would
let the EOS on the other pads go through).
The logic has only been changed a tiny bit for EOS handling resulting in:
* If there is no next group, let the EOS go through
* If there is a next group, but not all pads are drained in the active
group, drop the EOS event
* If there is a next group and all pads are drained, then the ghostpads
will be removed and the EOS event will be dropped automatically.
For streams at low bitrates we need to set a limit in time because the limit
in bytes might not reached too late, sometimes more than 30 seconds.
This limit can only be set if upstream is seekable (see #584104)
Closes#647769
Parsers are the only element class that are not changing the data and
could lead to an infinite loop. Other element classes like demuxers,
e.g. id3demux, can be used multiple times in a row and sometimes are.
Previously we only checked against the raw caps but we should also
check against the return value of autoplug-continue. Additionally fix
a thread-safety issue with accessing the raw caps.
...instead of copying the array. Returning NULL will result
in the original factories array to be used and prevents a useless
array copy in most use cases.
Add notes about the behaviour if multiple signal handlers are connected.
For most autoplug-* signals only the first signal handler will ever
be invoked.
Also add to the autoplug-sort docs that the signal handler can return NULL
to specify that the order should change and other handlers get the chance
to sort the array.