When the audio device goes away during playback or capture, we were
going into an infinite loop of AUDCLNT_E_DEVICE_INVALIDATED. Return -1
and post an error message so the ringbuffer thread exits with an error.
When either the source or sink goes from PLAYING -> NULL -> PLAYING,
we call _reset() which sets client_needs_restart, and then we call
prepare() which calls IAudioClient_Start(), so we don't need to call
it again in src_read() or sink_write(). Unlike when we're just going
PLAYING -> PAUSED -> PLAYING.
This is now handled directly in gstaudiosrc/sink, and we were setting
it in the wrong thread anyway. prepare() is not the same thread as
sink_write() or src_read().
The clock seems to have a lot of drift (or we're using it incorrectly)
which causes buffers to be late on the sink and get dropped.
Disable till someone can investigate whether our usage of the API is
incorrect (it looked correct to me) or if something is wrong.
We can just return the template caps till the device is opened when
going from READY -> PAUSED. This fixes a CRITICAL when calling
ELEMENT_ERROR before the ringbuffer is allocated.
Also fixes a couple of leaks in error conditions.
https://bugzilla.gnome.org/show_bug.cgi?id=794611
Now, when you set loopback=true on wasapisrc, the `device` property
should refer to a sink (render) device for loopback recording.
If the `device` property is not set, the default sink device is used.
The low-latency property is *always* safe to enable, so applications
that do realtime communication should set it, and the elements will
automatically configure WASAPI to use the lowest possible device
period, and the audioringbuffer in audiobasesink will also be
configured accordingly.
Applications can also use exclusive mode during capture and playback
for the lowest possible latency if they know that the device will not
be used by any other application.
In this mode, the latency-time and buffer-time properties will be
completely ignored.
The AudioClient3 API is only available on Windows 10, and we will
automatically detect when it is available and use it.
However, using it for capturing audio with low latency and without
glitches seems to require setting the realtime priority of the entire
pipeline to "critical", which we cannot do from inside the element.
Hence, we can only enable that by default for wasapisink since
apps should be able to safely set the low-latency property to TRUE if
they need low-latency capture or playback.
This allows us to request ultra-low-latency device periods even in
shared mode. However, this requires good drivers and Windows 10, so
we only enable this when we detect that we are running on Windows 10
at runtime.
You can forcibly disable this feature on Windows 10 by setting
GST_WASAPI_DISABLE_AUDIOCLIENT3=1 in the environment.
Same changes as done for wasapisink in cbe2fc40a. Turns out this is
sometimes also needed for capture. Reported by Mathieu_Du.
Also improve logging in that case for easier debugging.
This reduces the chances of startup glitches, and also reduces the
chances that we'll get garbled output due to driver bugs.
Recommended by the WASAPI documentation.
https://bugzilla.gnome.org/show_bug.cgi?id=793289
So far, we have been completely discarding the values of latency-time
and buffer-time and trying to always open the device in the lowest
latency mode possible. However, sometimes this is a bad idea:
1. When we want to save power/CPU and don't want low latency
2. When the lowest latency setting causes glitches
3. Other audio-driver bugs
Now we will try to follow the user-set values of latency-time and
buffer-time in shared mode, and only latency-time in exclusive mode (we
have no control over the hardware buffer size, and there is no use in
setting GstAudioRingBuffer size to something larger).
The elements will still try to open the devices in the lowest latency
mode possible if you set the "low-latency" property to "true".
https://bugzilla.gnome.org/show_bug.cgi?id=793289
This requires using allocated strings, but it's the best option. For
instance, a call could fail because CoInitialize() wasn't called, or
because some other thing in the stack failed.
https://bugzilla.gnome.org/show_bug.cgi?id=793289
This is particularly important when running in exclusive mode because
any delays will immediately cause glitching.
The MinGW version in Cerbero is too old, so we can only enable this when
building with MSVC or when people build GStreamer for MSYS2 or other
MinGW-based distributions.
To force-enable this code when building with MinGW, build with
CFLAGS="-DGST_FORCE_WIN_AVRT -lavrt".
https://bugzilla.gnome.org/show_bug.cgi?id=793289
This provides much lower latency compared to opening in shared mode,
but it also means that the device cannot be opened by any other
application. The advantage is that the achievable latency is much
lower.
In shared mode, WASAPI's engine period is 10ms, and so that is the
lowest latency achievable.
In exclusive mode, the limit is the device period itself, which in my
testing with USB DACs, on-board PCI sound-cards, and HDMI cards is
between 2ms and 3.33ms.
We set our audioringbuffer limits to match the device, so the
achievable sink latency is 6-9ms. Further improvements can be made if
needed.
https://bugzilla.gnome.org/show_bug.cgi?id=793289
We will use ->device for storing a pointer to the IMMDevice structure
which is needed for fetching the caps supported by devices in
exclusive mode.
https://bugzilla.gnome.org/show_bug.cgi?id=793289
This will set the actual-latency-time and actual-buffer-time of the sink
and source.
We completely ignore the latency-time/buffer-time values set
on the element because WASAPI is happiest when it is reading/writing at
the default period. Improving this will likely require the use of the
IAudioClient3 interfaces which are not available in MinGW yet.
https://bugzilla.gnome.org/show_bug.cgi?id=792897
We need to parse the WAVEFORMATEXTENSIBLE structure, figure out what
positions the channels have (if they are positional), and reorder them
as necessary.
https://bugzilla.gnome.org/show_bug.cgi?id=792897
Both the source and the sink elements were broken in a number of ways:
* prepare() was assuming that the format was always S16LE 2ch 44.1KHz.
We now probe the preferred format with GetMixFormat().
* Device initialization was done with the wrong buffer size
(buffer_time is in microseconds, not nanoseconds).
* sink_write() and src_read() were just plain wrong and would never
write or read anything useful.
* Some functions in prepare() were always returning FALSE which meant
trying to use the elements would *always* fail.
* get_caps() and delay() were not implemented at all.
TODO: support for >2 channels
TODO: pro-audio low-latency
TODO: SPDIF and other encoded passthroughs
Three new properties are now implemented: role, mute, and device.
* 'role' designates the stream role of the initialized device, see:
https://msdn.microsoft.com/en-us/library/windows/desktop/dd370842(v=vs.85).aspx
* 'device' is a system-wide GUIDesque string for a specific device.
* 'mute' is a sink property and simply mutes it.
On my Windows 8.1 system, the lowest latency that works is:
wasapisrc buffer-time=20000
wasapisink buffer-time=10000
aka, 20ms and 10ms respectively. These values are close to the lowest
possible with the IAudioClient interface. Further improvements require
porting to IAudioClient2 or IAudioClient3.
https://docs.microsoft.com/en-us/windows-hardware/drivers/audio/low-latency-audio
Original commit message from CVS:
* sys/Makefile.am:
* sys/wasapi/Makefile.am:
* sys/wasapi/gstwasapi.c:
* sys/wasapi/gstwasapisink.c:
* sys/wasapi/gstwasapisink.h:
* sys/wasapi/gstwasapisrc.c:
* sys/wasapi/gstwasapisrc.h:
* sys/wasapi/gstwasapiutil.c:
* sys/wasapi/gstwasapiutil.h:
New plugin for audio capture and playback using Windows Audio Session
API (WASAPI) available with Vista and newer (#520901).
Comes with hardcoded caps and obviously needs lots of love. Haven't
had time to work on this code since it was written, was initially just
a quick experiment to play around with this new API.