MinGW does not provide comsupp.lib, so there's no implementation of
_com_util::ConvertBSTRToString. Use a fallback implementation that
uses wcstombs() instead.
On MinGW we also truncate the name to 100 chars which should be fine.
First of all, all the HD and UHD modes should be top-field-first, as
also returned by the Decklink mode iterator API.
Then we should include the caps field "field-order" in the caps of the
source (not the sink due to negotiation problems with optional fields).
And finally we should set the TFF flag on interlaced buffers that are
top-field-first.
The hardware timestamps have no relation to when frames were produced,
only when frames arrived somewhere in the hardware. Especially there is
no guarantee that audio and video will have the same hardware timestamps
although they belong together, and even more important: the rate with
which the hardware timestamps increase is completely unrelated to the
rate with which the frames are captured!
As such we can as well use the pipeline clock directly and stop doing
complicated calculations. Also as a side effect this allows now running
without any pipeline clock, by directly making use of the stream times
as reported by the driver.
https://bugzilla.gnome.org/show_bug.cgi?id=774850
When the mode of decklinkvideosink is set to "auto", the sink claims to
support the full set of caps that it can support for all modes. Then, every
time new caps are set, the sink will automatically find the correct mode for
these caps and set it.
Caveat: We have no way to know whether a specific mode will actually work for
your hardware. Therefore, if you try sending 4K video to a 1080 screen, it
will silently fail, we have no way to know that in advance. Manually setting
that mode at least gave the user a way to double-check what they are doing.
https://bugzilla.gnome.org/show_bug.cgi?id=759600
Otherwise we're going to return times starting at 0 again after shutting down
an element for a specific input/output and then using it again later.
https://bugzilla.gnome.org/show_bug.cgi?id=755426
Not from the decklink clock. Both will return exactly the same time once the
decklink clock got slaved to the pipeline clock and received the first
observation, but until then it will return bogus values. But as both return
exactly the same values, we can as well use the pipeline clock directly.
Otherwise we might start the scheduled playback before the audio or video streams are
actually enabled, and then error out later because they are enabled to late.
We enable the streams when getting the caps, which might be *after* we were
set to PLAYING state.
Otherwise we might start the streams before the audio or video streams are
actually enabled, and then error out later because they are enabled to late.
We enable the streams when getting the caps, which might be *after* we were
set to PLAYING state.
The decklink driver eventually crashes after repeated creation/deletion
of device, input, output, and configuration objects. Change to create
these at the outset and keep them around forever.
Builds with MSVC, not tested in MinGW or anything else. Added
COM handling code, borrowed from dshowvideosink. Moved Linux
specific files to ./linux and added Windows specific files to
./win (generated from IDL files in VS9). Added macros to handle
BSTR and defined bool as BOOL. Fixes#655362.
Signed-off-by: David Schleef <ds@schleef.org>