gst_parse_launchv, gst_parse_launchv_full and gst_parse_launch_full
all return floating refs, the same as gst_parse_launch, which just
calls gst_parse_launch_full internally anyway.
Add a unit test assertion to check it's true.
Spotted by nemequ on IRC.
The check itself is racy.
(CK_FORK=no GST_CHECK=test_output_order make elements/multiqueue.forever).
The problem is indeed the test and not the actual element behaviour.
The objects to push are being pulled out of the single internal queues in the
right order and at the right time...
But between:
* the moment the global multiqueue lock is released (which was used to detect
if we should pop and push downstream the next buffer)
* and the moment it is received by the source pad (which does the check)
=> another single queue (like the unlinked pad) might pop and push a buffer
downstream
What should we do ? Putting a bigger margin of error (say 5 buffers) doesn't
help, it'll eventually fail.
I can't see how we can detect this reliably.
https://bugzilla.gnome.org/show_bug.cgi?id=708661
Wrap caps strings so that it can handle serialization and deserialization
of caps inside caps. Otherwise the values from the internal caps are parsed
as if they were from the upper one
https://bugzilla.gnome.org/show_bug.cgi?id=708772
Fixes abort when the old specifiers are used. Fix up the conversion
specifier, it would get overwritten with 'c' below to the extension
format char, which then later is unhandled, leading to the abort.
Also fix up and enable unit test for this.
https://bugzilla.gnome.org/process_bug.cgi
These account for both possible type size mismatch AND -mms-bitfields
packing. Sizes are taken from an i686-w64-mingw32-built GStreamer,
gcc 4.8.0, mingw-w64 svn-r5685.
Fixes#697551
This is equal to any other caps features but results in unfixed caps. It
would be used by elements that only look at the buffer metadata or are
currently working in passthrough mode, and as such don't care about any
specific features.
These are meant to specify features in caps that are required
for a specific structure, for example a specific memory type
or meta.
Semantically they could be though of as an extension of the media
type name of the structures and are handled exactly like that.
pop() in collected callback.
There were three threads in the test cases that hanged: the test thread and two
threads that push buffers. Each thread push one buffer on one pad. There are
two pads in the collectpads so the second buffer will trigger the
collect-callback.
This is what happens when the hang occurs:
The first thread pushes a buffer and initializes a cookie to the value of a
counter in the collectpads object and waits on a cond for the counter to change
and for someone to consume the buffer (i.e. _pop() it).
The second thread pushes a buffer and calls the collected callback, which
signals the cond that the test thread is waiting for.
The test thread pops both buffers (without holding any lock). Each call to
_pop() increases the counter broadcasts the condition that the first thread is
now waiting for. It then joins both threads (hangs).
The first thread wakes up and returns, since its buffer has been consumed.
The second thread starts executing again. When the callback, called by the
second thread, has returned it initializes a cookie to the value of a counter,
which has already prematurely been increased by the test thread when it popped
the buffers, and wait's on a cond for the counter to change and for someone to
consume the buffer (i.e. _pop() it). Since the buffer has already been poped
and the counter has already been increased it will be stuck forever.
https://bugzilla.gnome.org/show_bug.cgi?id=685555
We previously forgot to initilize the amplitde property to the default and thus it was 0.0. Therefore a default lfo controlsource returned a series of 0.0 and the test was asserting on that.