When the set-timestamps property is set, use PCRs on the provided
(or autodetected) pcr-pid to apply (or replace) timestamps on the
output buffers, using piece-wise linear interpolation.
This allows tsparse to be used to stream an arbitrary mpeg-ts file,
or to smooth jittery reception timestamps from a network stream.
The reported latency is increased to match the smoothing latency if
necessary.
It was previously a mix and match of both variants, introducing just too much
confusion.
The prefix are from now on:
* GstMpegts for structures and type names (and not GstMpegTs)
* gst_mpegts_ for functions (and not gst_mpeg_ts_)
* GST_MPEGTS_ for enums/flags (and not GST_MPEG_TS_)
* GST_TYPE_MPEGTS_ for types (and not GST_TYPE_MPEG_TS_)
The rationale for chosing that is:
* the namespace is shorter/direct (it's mpegts, not mpeg_ts nor mpeg-ts)
* the namespace is one word under Gst
* it's shorter (yah)
* Avoids handling twice the same seek (can happen with playbin and files
with subtitles)
* Set the sequence number of the segment event to the sequence number of
the seek event that generated it (-1 for the initial one).
Until now we simply ignored those streams (since we couldn't do anything
with it anyway). Now that we have the mpegts library and we offload the
section handling to the application side we can properly identify and
extract them.
By default it is disabled for tsparse and enabled for tsdemux, but there is
a property to change that.
This should open the way to properly handle all private section streams,
including:
* DSM-CC
* MHEG
* Carousel data
* Metadata streams (though I haven't seen any of those in the wild)
* ... And all other specs/protocols making use of those
Partially fixes#560631
* Only mpeg-ts section packetization remains.
* Improve code to detect duplicated sections as early as possible
* Add FIXME for various issues that need fixing (but are not regressions)
https://bugzilla.gnome.org/show_bug.cgi?id=702724
This reverts commit e14e310f71.
Would be better move the packetizer flushing to FLUSH_STOP and avoid
the race that way. Without introducing a memory barrier that could
have impact in the performance.
This can be used to notify subclasses no more data is expected this
round.
tsparse will use it to push whole buffers (without copy) on the main
source pad.
It could also be used later to decide whether to push pending data
in order to reduce latency.
We first activate new streams before shutting down old ones.
We emit no-more-pads after we add new streams and emit EOS before
removing old ones.
Also cleanup/refactor a bit more of the code accordingly
buffer timestamps are converted to GstClockTime to cover pcr/pts wraps.
multiple pcr/pts wraps are handled with an index which ensures at most
a single pcr wraparound between two entries.
the last seen pcr is recorded to have a nearby index point for short seeks
resuming playback might be delayed if the postion is not a keyframe
TODO: replace manual packet scanning and parsing in the initial duration estimation