When we stop sending because we need more data, still keep a GSource
around to receive data from the clients.
Also handle read and write in the same go.
The client-removed signal used G_INT_TYPE instead of G_SOCKET_TYPE
in its definition leading to problems on platforms where the size
of a pointer is larger than the size of an integer, It would also
not work at all with dynamic language bindings.
https://bugzilla.gnome.org/show_bug.cgi?id=757155
From the API documentation: "Note that it is generally not
a good idea to reuse an existing cancellable for more
operations after it has been cancelled once, as this
function might tempt you to do. The recommended practice
is to drop the reference to a cancellable after cancelling
it, and let it die with the outstanding async operations.
You should create a fresh cancellable for further async
operations."
https://bugzilla.gnome.org/show_bug.cgi?id=739132
We don't expect clients to send us any data, but if they do, just
ignore it. Web browsers might send us an HTTP request for example,
but some will still be happy if we just send them data without
a proper HTTP response.
There was a bug in the reading code path. We only have a small
read buffer and would provoke an EWOULDBLOCK trying to read
because we don't bail out of the loop early enough.
https://bugzilla.gnome.org/show_bug.cgi?id=743834
multisocketsink now understands the new GstNetControlMessageMeta to allow
sending control messages (ancillary data) with data when writing to Unix
domain sockets.
A later commit will introduce a new socketsrc element which will similarly
understand `GstNetControlMessageMeta`. This, when used with a
`GSocketControlMessage` of type `GUnixFDMessage` will allow GStreamer to
send and receive file-descriptions in ancillary data, the first step to
using memfds to implement zero-copy video IPC.
Thanks to glib's `GSocketControlMessage` abstraction the code introduced
in this commit is entirely portable and doesn't introduce and additional
dependencies or conditionally compiled code, even if it is unlikely to be
of much use on non-UNIX systems.
If a buffer is made up of non-contiguous `GstMemory`s `gst_buffer_map`
has to copy all the data into a new `GstMemory` which is contiguous. By
mapping all the `GstMemory`s individually and then using scatter-gather
IO we avoid this situation.
This is a preparatory step for adding support to multisocketsink for
sending file descriptors, where a GstBuffer may be made up of several
`GstMemory`s, some of which are backed by a memfd or file, but I think this
patch is valid and useful on its own.
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=746150
They are very confusing for people, and more often than not
also just not very accurate. Seeing 'last reviewed: 2005' in
your docs is not very confidence-inspiring. Let's just remove
those comments.
We can't just make a vfunc that takes a union of int
and pointer as argument, and then set up subclass-specific
action signals and signals that take int (in multifdsink's
case) or a GSocket * (in multisocketsink's case), and then
expect everything to Just Work. This blows up spectacularly
on PPC G4 for some reason.
Fixes multifdsink unit test on PPC, and fixes aborts in
multisocketunit test (now hangs in gst_pad_push - progress).