Fixes for gst_segment_position_from_running_time_full() when
converting running_times that precede the segment start (or
stop in a negative rate segment)
The return value was incorrectly negated in those cases.
Add some more unit test checks for those cases, and especially
for segments with offsets.
Otherwise it's not guaranteed that buffers are actually on disk after
pushing them, and reading the file via g_file_get_contents() might not
include them yet.
This reverts commit 11e0f451eb.
When pushing a sticky event out of a pad with a pad probe or pad offset,
those should not be applied to the event that is actually stored in the
event but only in the event sent downstream. The pad probe and pad
offsets are conceptually *after* the pad, added by external code and
should not affect any internal state of pads/elements.
Also storing the modified event has the side-effect that a re-sent event
would arrive with any previous modifications done by the same pad probe
again inside that pad probe, and it would have to check if its
modifications are already applied or not.
For sink pads and generally for events arriving in a pad, some further
changes are still needed and those are tracked in
https://bugzilla.gnome.org/show_bug.cgi?id=765049
In addition, the commit also had a refcounting problem with events,
causing already destroyed events to be stored inside pads.
Previously gst_buffer_list_foreach() could modify (drop or replace)
buffers in non-writable lists, which could cause all kinds of problems
if other code also has a reference to the list and assumes that it stays
the same.
https://bugzilla.gnome.org/show_bug.cgi?id=796692
gst_buffer_list_new_sized(0) will cause an underflow in a calculation
which then makes it try to allocate huge amounts of memory, which
may lead to aborts.
https://bugzilla.gnome.org/show_bug.cgi?id=795758
In the case where the user sets a new padprobeinfo->data in a probe
where the data is a sticky event, the new sticky event should be automatically
sticked on the probed pad.
https://bugzilla.gnome.org/show_bug.cgi?id=795330
Remove unneeded reapplication of patterns. Besides being
superfluous (gst_debug_reset_threshold already applies
patterns) it was also wrong and didn't stop checking patterns
after the first match (broken in 67e9d139).
Also fix up unit test which checked for the wrong order.
https://bugzilla.gnome.org/show_bug.cgi?id=794717
The queue gets filled by the tail, so a query will always be the tail
object, not the head object. Also add a _peek_tail_struct() method to the
GstQueueArray to enable looking at the tail.
With unit test to prevent future regression.
https://bugzilla.gnome.org/show_bug.cgi?id=762875
Position queries with GST_FORMAT_TIME are supposed to return stream
time.
gst_base_sink_get_position() estimates the current stream time on its
own instead of using gst_segment_to_stream_time(), but the algorithm
used was not taking segment.offset into account, resulting in invalid
values when this field was set to a non-zero value.
https://bugzilla.gnome.org/show_bug.cgi?id=792434
Occasionally this test would fail, especially if the system is under load,
because the position query would pick up the last position from the
last buffer timestamp which has a lower timestamp than what we're
looking for. The sleep is long enough, however. It's unclear to me why
exactly this happens but there seems to be some kind of scheduling
issue going on as the streaming thread floods the sink with buffers.
Let's throttle the fakesrc to 100 buffers per second and make the sink
sync to the clock to restore some sanity. It should be totally sufficient
to test what we want to test, and seems to make things reliable here.
Set up all ten pipelines and preroll them first, and only set
them to playing to run wild after they're all set up. If we set
them to PLAYING directly and let those threads run wild, then
it might take ages (many seconds) for the other pipelines to
even get up and running, especially on machines with only one
or two cores, and operating systems that suck at scheduling.
Now the fakesink test takes 19 secs instead of 71 secs on a
single-cpu windows machine.
Scale the number of threads used in the stress tests according to
the number of cores/cpus. We want some contention, but we also
don't want too much contention, as some operating systems are
better at handling 100 threads running wild on a single core
than others.
Add header with structure sizes for 64-bit windows as well.
They're almost the same as on Linux, but it looks like things
like padding unions get aligned slightly differently so there
are a handful of differences:
sizeof(GstGhostPad) is 528, expected 536
sizeof(GstPad) is 512, expected 520
sizeof(GstPadProbeInfo) is 64, expected 72
sizeof(GstProxyPad) is 520, expected 528
The test checks that categories not covered by the pattern in the
GST_DEBUG string have debug level GST_LEVEL_DEFAULT set, but previous
tests mess with the default threshold, which made this test fail on
Windows or when run with CK_FORK=no. Fix this by resetting everything
at the beginning, and then also do a sanity check afterwards.
Add a gst_base_src_submit_buffer_list() function that allows subclasses
to produce a bufferlist containing multiple buffers in the ::create()
function. The buffers in the buffer list will then also be pushed out
in one go as a GstBufferList. This can reduce push overhead
significantly for sources with packetised inputs (such as udpsrc)
in high-throughput scenarios.
The _submit_buffer_list() approach was chosen because it is fairly
straight-forward, backwards-compatible, bindings-friendly (as opposed
to e.g. making the create function return a mini object instead),
and it allows the subclass maximum control: the subclass can decide
dynamically at runtime whether to return a list or a single buffer
(which would be messier if we added a create_list virtual method).
https://bugzilla.gnome.org/show_bug.cgi?id=750241
Convenience function to just grab all pending data
from the harness, e.g. if we just want to check if
it matches what we expect and we don't care about
the chunking or buffer metadata.
Based on patch by: Havard Graff <havard.graff@gmail.com>