Otherwise we're going to return times starting at 0 again after shutting down
an element for a specific input/output and then using it again later.
https://bugzilla.gnome.org/show_bug.cgi?id=755426
GstVideoDecoder has its own logic for detecting when to reconfigure
which ultimately calls decide_allocation and results in a new
texture cache that has not been configured from our reconfigure check.
https://bugzilla.gnome.org/show_bug.cgi?id=755156
Fixes playback to GL memory on iOS, where the colours are messed
up by passing Luminance/LuminanceAlpha textures where
color convert expects R/RG textures.
https://bugzilla.gnome.org/show_bug.cgi?id=754504
We were converting all times to our internal running times, that is the time
the sink itself spent in PLAYING already. But forgot to do that for the
running time calculated from the buffer timestamps. As such, all buffers were
scheduled much later if the pipeline's running time did not start at 0.
This happens for example if a base time is explicitly set on the pipeline.
https://bugzilla.gnome.org/show_bug.cgi?id=754528
Casting to UINT from HMIXER generates the following warning with
64bit Windows target MinGW:
gstdirectsoundsrc.c: In function 'gst_directsound_src_mixer_find':
gstdirectsoundsrc.c:733:30: error: cast from pointer to integer of different size [-Werror=pointer-to-int-cast]
mmres = mixerGetDevCaps ((UINT) dsoundsrc->mixer,
^
cc1: all warnings being treated as errors
We can use portable GPOINTER_TO_UINT() macro for this propose.
https://bugzilla.gnome.org/show_bug.cgi?id=754756
Instead of checking for the gstreamer-video-1.0 package is installed,
just assume it is since we already check for the -base dependency.
With this replace the GST_VIDEO_* variables in makefiles and directly
link with libgstvideo.
https://bugzilla.gnome.org/show_bug.cgi?id=753820
Also implement framerate handling correctly by borrowing the code from
ximagesrc. GstBaseSrc::get_times() can't be used for that, we have to
implement proper waiting ourselves.
The block that is dispatched async to the main thread assumed the
wrapping GstAvSampleVideoSink to be alive. However, at the time of
the block execution the GstObject instance that is deferenced to access
the CA layer might already be freed, which caused occasional crashes.
Instead, we now only pass the CoreAnimation layer that needs to be
released to the block. We use __block to make sure the block is not
increasing the refcount of the CA layer again on its own.
https://bugzilla.gnome.org/show_bug.cgi?id=753081
CMBlockBuffer offers a model similar to GstBuffer, as it can
consist of multiple non-consecutive memory blocks.
Prior to this change, what we were doing was:
1) Incorrect:
CMBlockBufferCreateWithMemoryBlock does not copy the data,
but we gst_buffer_unmap'd right away.
2) Inefficient:
If the GstBuffer consisted of non-contiguous memory blocks,
gst_buffer_map resulted in malloc / memcpy.
With this change, we construct a CMBlockBuffer out of individual mapped
GstMemory objects. CMBlockBuffer is made to retain the GstMemory
objects (through the use of CMBlockBufferCustomBlockSource), so the
original GstBuffer can be unref'd.
https://bugzilla.gnome.org/show_bug.cgi?id=751241
All goto fail happen before ret is set. ret must be NULL, and the only
thing the fail statement block does is return NULL. Replacing the jumps to
do this return directly.
CID #1311329
CMBlockBufferGetDataLength would return the entire data length, while
size of individual blocks can be smaller. Iterate over the block buffer
and add the individual (possibly non-contiguous) memory blocks.
https://bugzilla.gnome.org/show_bug.cgi?id=751071
When AVFoundation indicates a supported frame rate range, add it to
the caps. This is important for devices such as the iPhone 6, which
indicate a single AVFrameRateRange of 2fps - 60fps.
https://bugzilla.gnome.org/show_bug.cgi?id=751048
In JNI_OnLoad() we will already get the Java VM passed and could
just directly use that. gstreamer_android-1.0.c will now provide
this to us.
Reason for this is that apparently not all Android system are
providing the JNI functions to get the currently running Java VMs, so
we would fail to get. With this we will always be able to get the Java
VM on such systems.