Callbacks of CUvideoparser is called on the streaming thread.
So the use of async queue has no benefit.
Make control flow straightforward instead of long while/switch loop.
The D bit is meant to be set whenever there is a discontinuity
in transmission, and directly maps to the DISCONT flag.
The E bit is not meant to be set on every buffer preceding a
discontinuity, but only on the last buffer of a contiguous section
of recording. This has to be signaled through the unfortunately-named
"discont" field of the custom NtpOffset event.
There's no reason for it to inherit from GstObject apart from
locking, which is easily replaced, and inheriting from
GInitiallyUnowned made introspection awkward and needlessly
complicated.
Previously we would've reported that there is signal unless we know for
sure that we don't have signal. For example signal would've been
reported before the device is even opened.
Now keep track whether the signal state is unknown or not and report no
signal if we don't know yet. As before, only send an INFO message about
signal recovery if we actually had a signal loss before.
We pass-through the video as is, only putting a GstMeta on it from the
caption sinkpad.
This fixes negotation problems caused by not passing through caps
queries in both directions.
Also handle CAPS/ACCEPT_CAPS queries directly for the caption pad
instead of proxying.
Make declare/define a function consistent.
Note that GstBaseTransform::set_caps should return gboolean
Compiling C object subprojects/gst-plugins-bad/ext/vulkan/f3f9d6b@@gstvulkan@sha/vkviewconvert.c.obj.
../subprojects/gst-plugins-bad/ext/vulkan/vkviewconvert.c(644):
warning C4133: '=': incompatible types - from 'GstFlowReturn (__cdecl *)(GstBaseTransform *,GstCaps *,GstCaps *)'
to 'gboolean (__cdecl *)(GstBaseTransform *,GstCaps *,GstCaps *)'
Based on a patch by
Georg Lippitsch <glippitsch@toolsonair.com>
Vivia Nikolaidou <vivia@toolsonair.com>
Using libltc from https://github.com/x42/libltc
We now have a single property to select the timecode source that should
be applied, and for each timecode source the timecode is updated at
every frame. Then based on a set mode, the timecode is added to the
frame if none exists already or all existing timecodes are removed and
the timecode is added.
In addition the real-time clock is considered a proper timecode source
now instead of only allowing to initialize once in the beginning with
it, and also instead of just taking the current time we now take the
current time at the clock time of the video frame.
... and put them into new nvcodec plugin.
* nvcodec plugin
Now each nvenc and nvdec element is moved to be a part of nvcodec plugin
for better interoperability.
Additionally, cuda runtime API header dependencies
(i.e., cuda_runtime_api.h and cuda_gl_interop.h) are removed.
Note that cuda runtime APIs have prefix "cuda". Since 1.16 release with
Windows support, only "cuda.h" and "cudaGL.h" dependent symbols have
been used except for some defined types. However, those types could be
replaced with other types which were defined by "cuda.h".
* dynamic library loading
CUDA library will be opened with g_module_open() instead of build-time linking.
On Windows, nvcuda.dll is installed to system path by CUDA Toolkit
installer, and on *nix, user should ensure that libcuda.so.1 can be
loadable (i.e., via LD_LIBRARY_PATH or default dlopen path)
Therefore, NVIDIA_VIDEO_CODEC_SDK_PATH env build time dependency for Windows
is removed.
Direct3D11 was shipped as part of Windows7 and it's obviously
primary graphics API on Windows.
This plugin includes HDR10 rendering if following requirements are satisfied
* IDXGISwapChain4::SetHDRMetaData is available (decleared in dxgi1_5.h)
* Display can support DXGI_COLOR_SPACE_RGB_FULL_G2084_NONE_P2020 color space
* Upstream provides 10 bitdepth format with smpte-st 2084 static metadata
MFX_FOURCC_VP9_SEGMAP surface in MSDK is an internal surface however
MSDK still call the external allocator for this surface, so this plugin
has to return UNSUPPORTED and force MSDK allocates surface using the
internal allocator.
See https://github.com/Intel-Media-SDK/MediaSDK/issues/762 for details
The call of MFXVideoENCODE_EncodeFrameAsync may not generate output and
the function returns MFX_ERR_MORE_DATA with NULL sync point, the input
frame is cached in this case, so it is possible that all allocated
frames go into the surfaces_used list after calling
MFXVideoENCODE_EncodeFrameAsync a few times, then the encoder will fail
to get an available surface before releasing used frames
This patch adds a new field of num_extra_frames to GstMsdkEnc and allows
encode element requires extra frames, the default value is 0.
This patch is the preparation for msdkvp9enc element.
The SPS parsing functions take a parse_vui_param flag
to skip VUI parsing, but there's no indication in the output
SPS struct that the VUI was skipped.
The only caller that ever passed FALSE seems to be the
important gst_h264_parser_parse_nal() function, meaning - so the
cached SPS were always silently invalid. That needs changing
anyway, meaning noone ever passes FALSE.
I don't see any use for saving a few microseconds in
order to silently produce garbage, and since this is still
unstable API, let's remove the parse_vui_param.
The spec calls for pic_timing SEI to be absent unless
there's either a CpbDpbDelaysPresentFlag or
pic_struct_present_flag in the SPS VUI data. If
both those flags are missing, warn.
If parsing an SEI errors out, it might not consume
all bits, leaving extra unparsed data in the reader
that the outer loop then tries to parse as a new
appended SEI.
Skip all the bits if any are left over to avoid
'finding' extra garbage SEI in the parsing.
When parsing SEI that require an SPS, return
GST_H264_PARSER_BROKEN_LINK instead of a generic
parsing error to let callers distinguish
bitstream errors from (expected) missing packets
when resuming decode.