Add interface to communicate the encoder resolution and related info
like framerate, interlaced vs. progressive, etc. This new interface
supersedes gst_vaapi_encoder_set_format() and doesn't use any GstCaps
but rather use GstVideoCodecState.
Note that gst_vaapi_encoder_set_codec_state() is also a synchronization
point for codec config. This means that the encoder is reconfigured
there to match the latest properties.
The specified caps in gst_video_encoder_set_output_state() function
arguments should not contain any resolution, pixel-aspect-ratio,
framerate, codec-data et al. Those rather should be set through the
returned GstVideoCodecState. This means that output caps creation
could be delayed until before gst_video_encoder_finish_frame() is
called.
This greatly simplifies the GstVideoEncoder::set_format() callback
by the way.
Rename a few member functions to make them more consistent:
- alloc_encoder(): now reduced to allocate the encoder object only;
- alloc_buffer(): allocate buffer from srcpad, and copy bitstream.
Update MPEG-2 and H.264 encode elements to cope with the new core
libgstvaapi properties API. i.e. all configurable properties are now
directly handled at the GstVaapiEncoder level.
Besides, this also makes sure to not use or modify the GstVaapiEncoder
private definitions directly. Private data need to remain private.
https://bugzilla.gnome.org/show_bug.cgi?id=719529
Add gst_vaapi_encoder_set_rate_control() interface to request a new
rate control mode for encoding. Changing the rate control mode is
only valid prior to encoding the very first frame. Afterwards, an
error ("operation-failed") is issued.
https://bugzilla.gnome.org/show_bug.cgi?id=719529
Factor out propose_allocation() hooks, creation of video buffer pool
for the sink pad, conversion from raw YUV buffers to VA surface backed
buffers. Update vaapidecode, vaapiencode and vaapipostproc to cope
with the new GstVaapiPluginBase abilities.
Introduce a new GstVaapiPluginBase object that will contain all common
data structures and perform all common tasks. First step is to have a
single place to hold VA displays.
While we are at it, also make sure to store and subsequently release
the appropriate debug category for the subclasses.
Refactor the GstVaapiCodedBuffer APIs so that to more clearly separate
public and private interfaces. Besides, the map/unmap APIs should not
be exposed as is but appropriate accessors should be provided instead.
* GstVaapiCodedBuffer: VA coded buffer abstraction
- gst_vaapi_coded_buffer_get_size(): get coded buffer size.
- gst_vaapi_coded_buffer_copy_into(): copy coded buffer into GstBuffer
* GstVaapiCodedBufferPool: pool of VA coded buffer objects
- gst_vaapi_coded_buffer_pool_new(): create a pool of coded buffers of
the specified max size, and bound to the supplied encoder
* GstVaapiCodedBufferProxy: pool-allocated VA coded buffer object proxy
- gst_vaapi_coded_buffer_proxy_new_from_pool(): create coded buf from pool
- gst_vaapi_coded_buffer_proxy_get_buffer(): get underlying coded buffer
- gst_vaapi_coded_buffer_proxy_get_buffer_size(): get coded buffer size
Rationale: more optimized transfer functions might be provided in the
future, thus rendering the map/unmap mechanism obsolete or sub-optimal.
https://bugzilla.gnome.org/show_bug.cgi?id=719775
Constify pointers wherever possible. Drop unused variables, and use
consistent variable names. Fix gst_vaapiencode_h264_allocate_buffer()
to correctly report errors, especially when in-place conversion from
bytestream to avcC format failed.
Move "rate-control" mode and "bitrate" properties to the GstVaapiEncode
base class. The actual range of supported rate control modes is currently
implemented as a plug-in element hook. This ought to be determined from
the GstVaapiEncoder object instead, i.e. from libgstvaapi.
Add a GST_VAAPIENCODE_CAST() helper to avoid run-time checks against
the GObject type system. We are guaranteed to only deal with the same
plug-in element object.