When initializing a timecode from a GDateTime, and the remaining time
until the new second is less than half a frame (according to the given
frame rate), it would lead to the creation of an invalid timecode, e.g.
00:00:00:25 (at 25 fps) instead of 00:00:01:00. Fixed.
https://bugzilla.gnome.org/show_bug.cgi?id=779866
Use G_GUINT64_FORMAT for guint64 values.
Introduced by fcb63e77a9
Found by Alexander Larsson
gstvideodecoder.c: In function 'gst_video_decoder_have_frame':
gstvideodecoder.c:3312:51: error: format '%u' expects argument of type 'unsigned int', but argument 8 has type 'guint64 {aka long long unsigned int}' [-Werror=format=]
Don't guess a timestamp of the start of the segment when running
in reverse mode, as more likely it means we're discontinuous somewhere
in the middle of the segment, and we'll fix up timestamps once
the frames are decoded and reversed.
When a PTS is not set, we still want to store the rest of the
buffer information, or else we lose important things like the
duration or buffer flags when parsing.
This adds a property to select the maximum number of threads to use for
conversion and scaling. During processing, each plane is split into
an equal number of consecutive lines that are then processed by each
thread.
During tests, this gave up to 1.8x speedup with 2 threads and up to 3.2x
speedup with 4 threads when converting e.g. 1080p to 4k in v210.
https://bugzilla.gnome.org/show_bug.cgi?id=778974
In gst_video_time_code_is_valid, also check for invalid
ranges when using drop-frame TC. Refactor some code which
broke after the check was added.
https://bugzilla.gnome.org/show_bug.cgi?id=779010
It was taking the initial input y-offset from the output value, which
only works for y=0 (in which case both are the same). If y > 0, we would
always stay behind the requested input offset and never ever read
anything from the input.
Sometimes there is a human-oriented timecode that represents an
interval between two other timecodes. It corresponds to the human
perception of "add X hours" or "add X seconds" to a specific timecode,
taking drop-frame oddities into account. This interval-representing
timecode is now a GstVideoTimeCodeInterval. Also added function to add it to
a GstVideoTimeCode.
https://bugzilla.gnome.org/show_bug.cgi?id=776447
The flags and field order weren't properly initialized in the
gst_video_info_init().
Furthermore in gst_video_info_from_caps() we might set unitiliazed
values previously, this only sets them if valid.
For drop-frame timecodes, the nsec_since_daily_jam doesn't necessarily
directly correspond to this many hours/minutes/seconds/frames. We have
to get the frame count as per frames_since_daily_jam and then convert.
https://bugzilla.gnome.org/show_bug.cgi?id=774585
Refuse to answer BYTES queries ourselves. The only
time they make sense is on raw elementary streams,
in which case upstream would already have answered.
https://bugzilla.gnome.org/show_bug.cgi?id=757631
It adds a third argument to pass GstBufferPoolAcquireParams
to gst_buffer_pool_acquire_buffer.
If a user subclasses GstBufferPoolAcquireParams, this allows to
pass an updated param to the underlying buffer pool at each
gst_video_decoder_allocate_output_frame_with_params call.
https://bugzilla.gnome.org/show_bug.cgi?id=773165
Usually this information is static for the whole stream, and various
container formats store this information inside the headers for the
whole stream.
Having it inside the caps for these cases simplifies code and makes it
possible to express these requirements more explicitly with the caps.
https://bugzilla.gnome.org/show_bug.cgi?id=771376
Also the format must be fixed on the default raw caps. If not
gst_video_info_from_caps() will fail and
gst_video_decoder_negotiate_default_caps() return FALSE.
The test simulates the use case where a gap event is received before
the first buffer causing the decoder to fall back to the default caps.
https://bugzilla.gnome.org/show_bug.cgi?id=773103