When using multichannel audio data and being needed to reorder channels,
audio data is not copied correctly because destination address of
memcpy is wrong.
For example, the following command
$ gst-launch-1.0 pulsesrc ! audio/x-raw,channels=6,format=S16LE ! filesink location=test.raw
will reproduce this issue if there is 6-ch audio input device.
This commit fixes that.
The detailed process of this issue is as follows:
1. gst-launch-1.0 calls gst_pulsesrc_prepare (gst-plugins-good/ext/pulse/pulsesrc.c)
1466 gst_pulsesrc_prepare (GstAudioSrc * asrc, GstAudioRingBufferSpec * spec)
1467 {
(skip...)
1480 {
1481 GstAudioRingBufferSpec s = *spec;
1482 const pa_channel_map *m;
1483
1484 m = pa_stream_get_channel_map (pulsesrc->stream);
1485 gst_pulse_channel_map_to_gst (m, &s);
1486 gst_audio_ring_buffer_set_channel_positions (GST_AUDIO_BASE_SRC
1487 (pulsesrc)->ringbuffer, s.info.position);
1488 }
In my environment, after line 1485 is processed, position of spec and s are
spec->info.position[0] = 0
spec->info.position[1] = 1
spec->info.position[2] = 2
spec->info.position[3] = 6
spec->info.position[4] = 7
spec->info.position[5] = 8
s.info.position[0] = 0
s.info.position[1] = 6
s.info.position[2] = 2
s.info.position[3] = 1
s.info.position[4] = 7
s.info.position[5] = 8
The values of spec->info.positions equal
GST_AUDIO_BASE_SRC(pulsesrc)->ringbuffer->spec->info.positions.
2. gst_audio_ring_buffer_set_channel_positions calls
gst_audio_get_channel_reorder_map.
3. Arguments of gst_audio_get_channel_reorder_map are
from = s.info.position
to = GST_AUDIO_BASE_SRC(pulsesrc)->ringbuffer->spec->info.positions
At the end of this function, reorder_map is set to
reorder_map[0] = 0
reorder_map[1] = 3
reorder_map[2] = 2
reorder_map[3] = 1
reorder_map[4] = 4
reorder_map[5] = 5
4. Go back to gst_audio_ring_buffer_set_channel_positions and
2065 buf->need_reorder = TRUE;
is processed.
5. Finally, in gst_audio_ring_buffer_read,
1821 if (need_reorder) {
(skip...)
1829 memcpy (data + i * bpf + reorder_map[j] * bps, ptr + j * bps, bps);
is processed and makes this issue.
Otherwise we would return EOF if nothing was written in any case, even
if this was actually a case of TIMEOUT or EWOULDBLOCK for example.
Thanks to Edward Hervey for debugging and finding this issue.
Fixes 2 problems:
1) Number of unmapped memories does not always match number of mmaped ones in
dispatch_write().
2) When dispatch_write() is dispatched second time after an incomplete write,
already set offsets will not be taken into account, thus corrupt RTP data will
be sent.
This makes it unnecessary for callers to first merge together all
memories, and it allows API like GstRTSPConnection to write them out
without first copying all memories together or using writev()-style API
to write multiple memories out in one go.
Fixes https://gitlab.freedesktop.org/gstreamer/gst-plugins-base/issues/370
g_source_remove() works only for a GSource which was attached
to default GMainContext, but the GSource might be attached to
custom context depending on how gst_discoverer_start() was called.
Whatever the attached context was, g_source_destroy() can clean it up.
Make consistent with what autotools puts into enabled_gl_apis
variable. Autotools puts 'gl' in there instead of 'opengl'.
This would cause problems when building -bad glmixers plugin
in meson against a -base that was built with autotools.
See https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/issues/871
Otherwise surface_width/surface_height stored in GstGLWindowPrivate
isn't changed, sometimes an unnecessary reconfigure event is sent on
sinkpad, then result in upstream reconfiguring.
Example pipeline:
gst-launch-1.0 videotestsrc ! msdkvpp ! glimagesink
The start_time and end_time in this context have already
been adjusted for the input's rate by converting them to running
time above. What is needed afterwards is to compare these
with the output's start/stop running time, which also takes
into account the rate, so we are comparing equal things.
Multiplying these with the output's rate here is only breaking
this logic. In most cases the input and output rate is the same,
so this multiplication effectively reverses the rate adjustment
that happened while converting to running time, which is why
we see the video playing with the original rate in tests.
Fixes#541
Binding the vertex array to 0 will unbind everything else already.
In the previous order older versions of the Intel GL driver caused
errors to be printed for every single call when disabling the vertex
attrib arrays after binding the vertex array to 0.
We make an allocator for temporary lines and then use this for all
the steps in the conversion that can do in-place processing.
Keep track of the number of lines each step needs and use this to
allocate the right number of lines.
Previously we would not always allocate enough lines and we would
end up with conversion errors as lines would be reused prematurely.
Fixes#350
ISO 14496-3 defines that audioObjectType 5 is a special case that
indicates SBR is present and that an additional field has to be
parsed to find the true audioObjectType.
There are two ways of signaling SBR within an AAC stream - implicit
and explicit (see [1] section 4.2). When explicit signaling is used,
the presence of SBR data is signaled by means of the SBR
audioObjectType in the AudioSpecificConfig data.
Normally the sample rate is specified by an index into a
table of common sample rates. However index 0x0f is a special case
that indicates that the next 24 bits contain the real sample rate.
[1] https://www.telosalliance.com/support/A-closer-look-into-MPEG-4-High-Efficiency-AACFixes#39
Checking the address distance between given begin/end sequence
doesn't make sense. They are output params.
This is to fix weird failure of libs_rtp on Windows
Code in g_return_*() must not have side effects, as it
might be compiled out if -DG_DISABLE_CHECKS is used, in
which case we would read garbage off the stack.
It breaks all the calculations. While it can make sense during
initialization, there's very little API that can be called with such
timecodes without ending up with wrong results.
The old API would only assert or return an invalid timecode, the new API
returns a boolean or NULL. We can't change the existing API
unfortunately but can at least deprecate it.
audioconvert's passthrough status can no longer be determined
strictly from input / output caps equality, as a mix-matrix can
now be specified.
We now call gst_base_transform_set_passthrough dynamically, based
on the return from the new gst_audio_converter_is_passthrough()
API, which takes the mix matrix into account.
The presence of `key-mgmt` attribute will set the mikey appropriately.
We therefore don't need to check the return value (which will
be overwritten afterwards).
CEA608_IN_CEA708_RAW is the same format as CEA708_RAW. It's only
difference is that it must contain only CEA608 and a format like this
does not exist in practice. In practice every element that handles raw
cc_data triplets must check each triplet for their actual content and
handle them accordingly.
For CC-only streams a parser could signal the existence of CEA608 and/or
CEA708 inside the caps but for metas this can only potentially be
signalled via the ALLOCATION query for negotiation purposes.
A separate format for this is not very useful and instead it should be a
format qualifier.
CEA608_S334_1A is the format defined by SMPTE S334-1 Annex A and which
is used for transferring CEA608 over SDI instead of CEA708 CDP packets.
According to RFC3611, the extended report blocks in XR packet can
have variable length. To visit each block, the iterator should look
into block header. Once XR type is extracted, users can parse the
detailed information by given functions.
Loss/Duplicate RLE
The Loss RLE and the Duplicate RLE have same format so
they can share parsers. For unit test, randomly generated
pseudo packet is used.
Packet Receipt Times
The packet receipt times report block has a list of receipt
times which are in [begin_seq, end_seq).
Receiver Reference Time paser for XR packet
The receiver reference time has ntptime which is 64 bit type.
DLRR
The DLRR report block consists of sub-blocks which has ssrc, last RR,
and delay since last RR. The number of sub-blocks should be calculated
from block length.
Statistics Summary
The Statistics Summary report block provides fixed length
information.
VoIP Metrics
VoIP Metrics consists of several metrics even though they are in
a report block. Data retrieving functions are added per metrics.
https://bugzilla.gnome.org/show_bug.cgi?id=789822