The size of the buffer would be zero'd out in gst_v4l2_buffer_finalize()
after the buffer is qbuf'd or pushed onto the queue of available buffers..
leaving a race condition where the thread waiting for the buffer could awake
and set back a valid size before the finalizing thread zeros out the length.
This would result that the newly allocated buffer has length of zero.
We'd prefer to throttle the decoder if we run out of buffers, to keep a bound
on memory usage. Also, for OMAP4 it is a requirement of the decoder to not
alternate between memory alloced by the display driver and malloc'd userspace
memory.
note: this really only affects v4l2sink since gst_v4l2_buffer_pool_get() is
only called once per buffer in the v4l2src case (in
gst_v4l2src_buffer_pool_activate())
It seems to cause strange occasional high latencies (almost 200ms) when dequeuing buffers from _buffer_alloc(). It is simpler and seems to work much better to dqbuf from the same thread that is queuing the next buffer.
This also does the following changes:
(1) pull the bufferpool code out into gstv4l2bufferpool.c, and make a
bit more generic so it can be used both for v4l2src and v4l2sink
(2) move some of the device probing/configuration/caps stuff into
gstv4l2object.c so it does not have to be duplicated between
v4l2src and v4l2sink
Fixes bug #590280.