If we let the daemon decide freely by passing -1, we end up always getting 20ms.
We want to set this value because in some cases we want to select a higher
latency-time in order to save power.
Fixes#597601
Remove the code to deal with a ringbuffer reset as this code is now in the base
class.
Bump the -base requirement as we need the new baseaudiosink code to function
properly.
Otherwise that code will just be expanded to nothing when compiled
-DG_DISABLE_ASSERT (PS: why is mainloop_start() called in the init
function and not when changing state to READY?)
We can't wait for the ENTER/LEAVE messages to be be posted because the base
class sometimes calls the start method with the object lock, which would block
the message posting.
Instead, just assume that the message will be posted soon and continue. We'll
have to fix this in the base class.
Emit stream-status messages for the pulse thread.
Don't use our own GCond for signaling but simply use the pulse mainloop
mechanisms for synchronisation.
See #587695
Upper volume limmit was 1000. That appear unneceasrily high. It would also cause
sever distortion if accidentialy used. Now its 10 (~ +15db) which is also in
sync with volume and playbin2.
Since we map the ringbuffer to the pulseaudio internal ringbuffer, flush the
pulseaudio buffer when we are asked to clear the ringbuffer.
This avoids some leftover audio after a seek.
Hack around thread-safety issues in GObject and our racy _get_type()
functions (we could easily fix the _get_type() functions, but we still
need to hack around the GObject class races until we require a newer
GLib version, I think).
First we ignore request to fill the ringbuffer which are less then a segment.
The small request where causing stutter.
Then we disable flushing the stream when running against pa 0.9.12 as this
triggers an assertiong in the sound server and terminates it. It does not happen
with 0.9.10 and 0.9.14.
We can use prebuf = 0 to instruct pulse to not pause the stream on underflows.
This way we can remove the underflow callback. We however have to manually
uncork the stream now when we have no available space in the buffer or when we
are writing too far away from the current read_index.
when we switch streams, the clock will reset to 0. Make sure that the provided
clock doesn't get stuck when this happens by keeping an initial offset. We also
need to make sure that we subtract this offset in samples when writing to the
ringbuffer.
If the caps changes, the sink is reset without transitioning through
a PAUSED->PLAYING state change, resulting in a corked stream. This avoids
the problem by checking that the stream is uncorked when writing samples
to it.