A new signal named on-bundled-ssrc is provided and can be
used by the application to redirect a stream to a different
GstRtpSession or to keep the RTX stream grouped within the
GstRtpSession of the same media type.
https://bugzilla.gnome.org/show_bug.cgi?id=772740
When doing rtx, the jitterbuffer will always add an rtx-timer for the next
sequence number.
In the case of the packet corresponding to that sequence number arriving,
that same timer will be reused, and simply moved on to wait for the
following sequence number etc.
Once an rtx-timer expires (after all retries), it will be rescheduled as
a lost-timer instead for the same sequence number.
Now, if this particular sequence-number now arrives (after the timer has
become a lost-timer), the reuse mechanism *should* now set a new
rtx-timer for the next sequence number, but the bug is that it does
not change the timer-type, and hence schedules a lost-timer for that
following sequence number, with the result that you will have a very
early lost-event for a packet that might still arrive, and you will
never be able to send any rtx for this packet.
Found by Erlend Graff - erlend@pexip.comhttps://bugzilla.gnome.org/show_bug.cgi?id=773891
The lost-event was using a different time-domain (dts) than the outgoing
buffers (pts). Given certain network-conditions these two would become
sufficiently different and the lost-event contained timestamp/duration
that was really wrong. As an example GstAudioDecoder could produce
a stream that jumps back and forth in time after receiving a lost-event.
The previous behavior calculated the pts (based on the rtptime) inside the
rtp_jitter_buffer_insert function, but now this functionality has been
refactored into a new function rtp_jitter_buffer_calculate_pts that is
called much earlier in the _chain function to make pts available to
various calculations that wrongly used dts previously
(like the lost-event).
There are however two calculations where using dts is the right thing to
do: calculating the receive-jitter and the rtx-round-trip-time, where the
arrival time of the buffer from the network is the right metric
(and is what dts in fact is today).
The patch also adds two tests regarding B-frames or the
“rtptime-going-backwards”-scenario, as there were some concerns that this
patch might break this behavior (which the tests shows it does not).
The new timeout is always going to be (timeout + delay), however, the
old behavior compared the current timeout to just (timeout), basically
being (delay) off.
This would happen if rtx-delay == rtx-retry-timeout, with the result that
a second rtx attempt for any buffers would be scheduled immediately instead
of after rtx-delay ms.
Simply calculate (new_timeout = timeout + delay) and then use that instead.
https://bugzilla.gnome.org/show_bug.cgi?id=773905
Instead of sending EOS when a source byes we have to wait for
all the sources to be gone, which means they already sent BYE and
were removed from the session. We now handle the EOS in the rtcp
loop checking the amount of sources in the session.
https://bugzilla.gnome.org/show_bug.cgi?id=773218
The basic idea is this:
1. For *larger* rtx-rtt, weigh a new measurement as before
2. For *smaller* rtx-rtt, be a bit more conservative and weigh a bit less
3. For very large measurements, consider them "outliers"
and count them a lot less
The idea being that reducing the rtx-rtt is much more harmful then
increasing it, since we don't want to be underestimating the rtt of the
network, and when using this number to estimate the latency you need for
you jitterbuffer, you would rather want it to be a bit larger then a bit
smaller, potentially losing rtx-packets. The "outlier-detector" is there
to prevent a single skewed measurement to affect the outcome too much.
On wireless networks, these are surprisingly common.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
Assuming equidistant packet spacing when that's not true leads to more
loss than necessary in the case of reordering and jitter. Typically this
is true for video where one frame often consists of multiple packets
with the same rtp timestamp. In this case it's better to assume that the
missing packets have the same timestamp as the last received packet, so
that the scheduled lost timer does not time out too early causing the
packets to be considered lost even though they may arrive in time.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
There is no need to schedule another EXPECTED timer if we're already
past the retry period. Under normal operation this won't happen, but if
there are more timers than the jitterbuffer is able to process in
real-time, scheduling more timers will just make the situation worse.
Instead, consider this packet as lost and move on. This scenario can
occur with high loss rate, low rtt and high configured latency.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
This patch fixes an issue with the estimated gap duration when there is
a gap immediately after a lost timer has been processed. Previously
there was a discrepancy beteen the gap in seqnum and gap in dts which
would cause wrong calculated duration. The issue would only be seen with
retranmission enabled since when it's disabled lost timers are only
created when a packet is received and the actual gap length and last dts
is known.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
Stats should also be collected for unsuccessful packets.
rtx-rtt is very important for determining the necessary configured
latency on the jitterbuffer. It's especially important to be able to
increase the latency when retransmitted packets arrive too late and are
considered lost. This patch includes these late packets in the
calculation of the various rtx stats, making them more correct and
useful.
Also in the case where the original packet arrives after a NACK is sent,
the received RTX packet should update the stats since it provides useful
information about RTT.
The RTT is only updated if and only if all requested retranmissions are
received. That way the RTT is guaranteed to make sense. If not we don't
know which request the packet is a response to and the RTT may be bogus.
A consequence of this patch is that RTT is not updated for a request
when one of the RTX packets for that seqnum is lost, but that since
measured RTT will be more accurate.
The implementation store the RTX information from the timed out timers
and use this when the retransmitted packet arrives. For performance
these timers are stored separately from the "normal" timers in order to
not impact performance (see attached performance test).
https://bugzilla.gnome.org/show_bug.cgi?id=769768
When disabled we can save some iterations over timers.
There is probably an argument for rtx-delay-reorder to exist, but
for normal operations, handling jitter (reordering) is something a
jitterbuffer should do, and this variable feels like functionality that
is not "in-sync" with what the jitterbuffer is trying to achieve.
Example: You have 50ms jitter on your network, and are receiving
audio packets with 10ms durations. An audio packet should not be
considered late until its rtx-timeout has expired (and hence a rtx-event
is sent), but with rtx-delay-reorder, events will be sent pretty much
all the time due to the jitter on the network.
Point being: The jitterbuffer should adapt its size to the measured network
jitter, and then rtx-delay-reorder needs to adapt as well, or simply
get out of the way and let the other (better) rtx-mechanisms do their job.
Also change find_timer to only use seqnum as an argument, since there
will only ever be one timer per seqnum at any given time. In the
one case where the type matters, the caller simply checks the type.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
To be able to cap the number of allowed streams for one session.
This is useful for preventing DoS attacks, where a sender can change
SSRC for every buffer, effectively bringing rtpbin to a halt.
https://bugzilla.gnome.org/show_bug.cgi?id=770292
https://github.com/mesonbuild/meson
With contributions from:
Tim-Philipp Müller <tim@centricular.com>
Jussi Pakkanen <jpakkane@gmail.com> (original port)
Highlights of the features provided are:
* Faster builds on Linux (~40-50% faster)
* The ability to build with MSVC on Windows
* Generate Visual Studio project files
* Generate XCode project files
* Much faster builds on Windows (on-par with Linux)
* Seriously fast configure and building on embedded
... and many more. For more details see:
http://blog.nirbheek.in/2016/05/gstreamer-and-meson-new-hope.htmlhttp://blog.nirbheek.in/2016/07/building-and-developing-gstreamer-using.html
Building with Meson should work on both Linux and Windows, but may
need a few more tweaks on other operating systems.
The current 'l' pointer will be NULL when the loop
is interrupted with a 'break' statement. Need to have
it advance to the next list item before interrupting.
With non-time segments, it now assumes that the arrival time of packets
is not relevant and that only the RTP timestamp matter and it produces
an output segment start at running time 0.
https://bugzilla.gnome.org/show_bug.cgi?id=766438
Some endpoints (like Tandberg E20) can send BYE packet containing our
internal SSRC. I this case we would detect SSRC collision and get rid
of the source at some point. But because we are still sending packets
with that SSRC the source will be recreated immediately.
This brand new internal source will not have some variables incorrectly
set in its state. For example 'seqnum-base` and `clock-rate` values will be
-1.
The fix is not to act on BYE RTCP if it contains internal or unknown
SSRC.
https://bugzilla.gnome.org/show_bug.cgi?id=762219
When a packet arrives that has already been considered lost as part of a
large gap the "lost timer" for this will be cancelled. If the remaining
packets of this large gap never arrives, there will be missing entries
in the queue and the loop function will keep waiting for these packets
to arrive and never push another packet, effectively stalling the
pipeline.
The proposed fix conciders parts of a large gap definitely lost (since
they are calculated from latency) and ignores the late arrivals.
In practice the issue is rare since large gaps are scheduled immediately,
and for the stall to happen the late arrival needs to be processed
before this times out.
https://bugzilla.gnome.org/show_bug.cgi?id=765933
The access to the session hash table must happen while the session lock is
taken, otherwise another thread might modify the hash table while we're
creating the stats.
https://bugzilla.gnome.org/show_bug.cgi?id=766025
The head of the queue is the oldest packet (as in lowest seqnum), the tail is
the newest packet. To calculate the fill level, we should calculate tail-head
while considering wraparounds. Not the other way around.
Other code is already doing this in the correct order.
https://bugzilla.gnome.org/show_bug.cgi?id=764889
When downstream blocks, "lost" timers are created to notify the
outgoing thread that packets are lost.
The problem is that for high packet-rate streams, we might end up with
a big list of lost timeouts (had a use-case with ~1000...).
The problem isn't so much the amount of lost timeouts to handle, but
rather the way they were handled. All timers would first be iterated,
then the one selected would be handled ... to re-iterate the list again.
All of this is being done while the jbuf lock is taken, which in some use-cases
would return in holding that lock for 10s... blocking any buffers from
being accepted in input... which would then arrive late ... which would
create plenty of lost timers ... which would cause the same issue.
In order to avoid that situation, handle the lost timers immediately when
iterating the list of pending timers. This modifies the complexity from
a quadratic to a linear complexity.
https://bugzilla.gnome.org/show_bug.cgi?id=762988