This patch introduces the AVTP Compressed Video Format (CVF) depayloader
specified in IEEE 1722-2016 section 8. Currently, this depayloader only
supports H.264 encapsulation described in section 8.5.
Is also worth noting that only single NAL units are handled: aggregated
and fragmented payloads are not handled.
As stated in AVTP CVF payloader patch, AVTP timestamp is used to define
outgoing buffer DTS, while the H264_TIMESTAMP defines outgoing buffer
PTS.
When an AVTP packet is received, the extracted H.264 NAL unit is added to
a "stash" (the out_buffer) of H.264 NAL units. This "stash" is pushed
downstream as single buffer (with NAL units aggregated according to format
used on GStreamer, based on ISO/IEC 14496-15) as soon as we get the AVTP
packet with M bit set.
This patch groups NAL units using a fixed NAL size lenght, sent downstream
on the `codec_data` capability.
The "stash" of NAL units can be prematurely sent downstream if a
discontinuity (a missing SEQNUM) happens.
This patch reuses the infra provided by gstavtpbasedepayload.c.
This patch introduces the AVTP Compressed Video Format (CVF) payloader
specified in IEEE 1722-2016 section 8. Currently, this payload only
supports H.264 encapsulation described in section 8.5.
Is also worth noting that only single NAL units are encapsulated: no
aggregation or fragmentation is performed by the payloader.
An interesting characteristic of CVF H.264 spec is that it defines an
H264_TIMESTAMP, in addition to the AVTP timestamp. The later is
translated to the GST_BUFFER_DTS while the former is translated to the
GST_BUFFER_PTS. From AVTP CVF H.264 spec, it is clear that the AVTP
timestamp is related to the decoding order, while the H264_TIMESTAMP is
an ancillary information to the H.264 decoder.
Upon receiving a buffer containing a group of NAL units, the avtpcvfpay
element will extract each NAL unit and payload them into individual AVTP
packets. The last AVTP packet generated for a group of NAL units will
have the M bit set, so the depayloader is able to properly regroup them.
The exact format of the buffer of NAL units is described on the
'codec_data' capability, which is parsed by the avtpcvfpay, in the same
way done in rtph264pay.
This patch reuses the infra provided by gstavtpbasepayload.c.
This patch introduces the avtpsrc element which implements a typical
network source. The avtpsrc element receives AVTPDUs encapsulated into
Ethernet frames and push them downstream in the GStreamer pipeline.
Implementation if pretty straightforward since the burden is implemented
by GstPushSrc class.
Likewise the avtpsink element, applications that utilize this element
must have CAP_NET_RAW capability since it is required by Linux to open
sockets from AF_PACKET domain.
This patch introduces the avtpsink elements which implements a typical
network sink. Implementation is pretty straightforward since the burden
is implemented by GstBaseSink class.
The avtpsink element defines three new properties: 1) network interface
from where AVTPDU should be transmitted, 2) destination MAC address
(usually a multicast address), and 3) socket priority (SO_PRIORITY).
Socket setup and teardown are done in start/stop virtual methods while
AVTPDU transmission is carried out by render(). AVTPDUs are encapsulated
into Ethernet frames and transmitted to the network via AF_PACKET socket
domain. Linux requires CAP_NET_RAW capability in order to open an
AF_PACKET socket so the application that utilize this element must have
it. For further info about AF_PACKET socket domain see packet(7).
Finally, AVTPDUs are expected to be transmitted at specific times -
according to the GstBuffer presentation timestamp - so the 'sync'
property from GstBaseSink is set to TRUE by default.
This patch introduces the AAF depayloader element, the counterpart from
the AAF payloader. As expected, this element inputs AVTPDUs and outputs
audio raw data and supports AAF PCM encapsulation only.
The AAF depayloader srcpad produces a fixed format that is encoded
within the AVTPDU. Once the first AVTPDU is received by the element, the
audio features e.g. sample format, rate, number of channels, are decoded
and the srcpad caps are set accordingly. Also, at this point, the
element pushes a SEGMENT event downstream defining the segment according
to the AVTP presentation time.
All AVTP depayloaders will share some common code. For that reason, this
patch introduces the GstAvtpBaseDepayload abstract class that implements
common depayloader functionalities. AAF-specific functionalities are
implemented in the derived class GstAvtpAafDepay.
This patch introduces the AVTP Audio Format (AAF) payloader element from
the AVTP plugin. The element inputs audio raw data and outputs AVTP
packets (aka AVTPDUs), implementing a typical protocol payloader element
from GStreamer.
AAF is one of the available formats to transport audio data in an AVTP
system. AAF is specified in IEEE 1722-2016 section 7 and provides two
encapsulation mode: PCM and AES3. This patch implements PCM
encapsulation mode only.
The AAF payloader working mechanism consists of building the AAF header,
prepending it to the GstBuffer received on the sink pad, and pushing the
buffer downstream. Payloader parameters such as stream ID, maximum
transit time, time uncertainty, and timestamping mode are passed via
element properties. AAF doesn't support all possible sample format and
sampling rate values so the sink pad caps template from the payloader is
a subset of audio/x-raw. Additionally, this patch implements only
"normal" timestamping mode from AAF. "Sparse" mode should be implemented
in future.
Upcoming patches will introduce other AVTP payloader elements that will
have some common code. For that reason, this patch introduces the
GstAvtpBasePayload abstract class that implements common payloader
functionalities, and the GstAvtpAafPay class that extends the
GstAvtpBasePayload class, implementing AAF-specific functionalities.
The AAF payloader element is most likely to be used with the AVTP sink
element (to be introduced by a later patch) but it could also be used
with UDP sink element to implement AVTP over UDP as described in IEEE
1722-2016 Annex J.
This element was inspired by RTP payloader elements.
This patch introduces the bootstrap code from the AVTP plugin (plugin
definition and init) as well as the build system files. Upcoming patches
will introduce payloaders, source and sink elements provided by the AVTP
plugin. These elements can be utilized by a GStreamer pipeline to
implement TSN audio/video applications.
Regarding the plugin build system files, both autotools and meson files
are introduced. The AVTP plugin is landed in ext/ since it has an
external dependency on libavtp, an opensource AVTP packetization
library. For further information about libavtp check [1].
[1] https://github.com/AVnu/libavtp