When the probe returns GST_PAD_PROBE_REMOVE and gets called concurrently
from the streaming thread while we're in the callback here, the hook has
already been destroyed by the time we've reacquired the object lock.
Consequently, cleanup_hook gets passed an invalid pointer.
Keep another reference to the hook alive to avoid this situation.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/873>
Protect clearing probes against concurrent modification which might happen
due to dispose does NOT guarantee that the object is not used anymore, as
it could be referenced again and so being continued used.
So, as in the rest of places where probes hook list is used, on dispose
it should be accessed holding the mutex "GST_OBJECT_LOCK (pad);" as
GHookList is not thread-safe.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/798>
Change the way the marshalled flag in the internal ProbeMarshall state
is handled when iterating over pad probes so that it only counts
probes that still exist and would be called when retrying.
This improves the way that removing a blocking probe works when
there are multiple blocking probes for different conditions (data vs
events for example).
As a side-effect, probes aren't put into the the called_probes array
unless they actually match the current probe type and would be called,
potentially reducing the number of hooks that get stored in the
called_probes array, and the cost of the looping check on retries.
Fixes https://gitlab.freedesktop.org/gstreamer/gstreamer/-/issues/658
Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/749>
This was going through a few locks and doing temporarily allocations for every
single task creation.. just to get a name.
We don't need to take locks since:
* The parent exists (we have a reference to it)
* The pad exists (the task belongs to it)
* Changing names of pad/elements when activating is a big no-no
Instead use the existing direct GST_DEBUG_PAD_NAME macro
Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/455>
To allow the refcounting tracer to work better. In childproxy/iterator
these might be plain GObjects but gst_object_unref() also works on them.
In other places where it is never GstObject, g_object_unref() is kept.
When playing gapless there were situations when some sticky events
like tags were stuck at some pad and then revived much later.
Therefore it is better to clear them upon stream-start.
Fixes#360
By passing NULL to `g_signal_new` instead of a marshaller, GLib will
actually internally optimize the signal (if the marshaller is available
in GLib itself) by also setting the valist marshaller. This makes the
signal emission a bit more performant than the regular marshalling,
which still needs to box into `GValue` and call libffi in case of a
generic marshaller.
Note that for custom marshallers, one would use
`g_signal_set_va_marshaller()` with the valist marshaller instead.
gst_pad_iterate_internal_links is usually used to find a single internal
link that a pad has, e.g. to find the corresponding pad of a multiqueue.
Added a helper function that will return either a single internal link,
if there's no other, or NULL.
Before GST_PAD_PROBE_HANDLED was introduced, we had to handle the case
where some probes would reset the probe info data field to NULL. This would
be considered an invalid use-case.
But with GST_PAD_PROBE_HANDLED it is totally fine to reset that, since
the probe has "handled" it.
* Making sure that `static inline` function are in the GIR (by first
defining them, and make sure to mark as skiped)
* Do not try to link to unexisting symbols
* Also generate GIR information about gst_tracers
The hook->hook_id is a gulong for which there are no portability issues
when tracing in printf format with %lu. So use %lu and remove the upcast
to 64 bit. This makes the code more consistent with everything else
tracing that hook_id and other gulong id.
Allows determining from downstream what the expected bitrate of a stream
may be which is useful in queue2 for setting time based limits when
upstream does not provide timing information.
Implement bitrate query handling in queue2
https://gitlab.freedesktop.org/gstreamer/gst-plugins-base/issues/60
A pointer to a hook in this list can easily not be unique, given both
the slice-allocator reusing memory, and the OS re-using freed blocks
in malloc.
By doing many repeated add and remove of probes, this becomes very easily
reproduced.
Instead use hook_id, which *is* unique for a added GHook.
And only ever use the non-live values if all pads are non-live,
otherwise only use the results of all live pads.
It's unclear what one would use the values for in the non-live case, but
by this we at least pass them through correctly then.
This is a follow-up for 794944f779, which
causes wrong latency calculations if the first pad is non-live but a
later pad is actually live. In that case the live values would be
accumulated together with the values of the non-live first pad,
generally causing wrong min/max latencies to be calculated.
IDLE probes that are directly called when being added will increase /
decrease the "number of IDLE probes running" counter around the call,
but when running from the streaming thread this won't happen.
This has the effect that when running from a streaming thread it is
possible to push serialized events or data out of the pad without
problems, but otherwise it would deadlock because serialized data would
wait for the IDLE probe to finish first (it is blocking after all!).
With this change it will now always consistently deadlock instead of
just every once in a while, which should make it obvious why this
happens and prevent racy deadlocks in application code.
https://bugzilla.gnome.org/show_bug.cgi?id=796895
This reverts commit 11e0f451eb.
When pushing a sticky event out of a pad with a pad probe or pad offset,
those should not be applied to the event that is actually stored in the
event but only in the event sent downstream. The pad probe and pad
offsets are conceptually *after* the pad, added by external code and
should not affect any internal state of pads/elements.
Also storing the modified event has the side-effect that a re-sent event
would arrive with any previous modifications done by the same pad probe
again inside that pad probe, and it would have to check if its
modifications are already applied or not.
For sink pads and generally for events arriving in a pad, some further
changes are still needed and those are tracked in
https://bugzilla.gnome.org/show_bug.cgi?id=765049
In addition, the commit also had a refcounting problem with events,
causing already destroyed events to be stored inside pads.
Probes were remembering a cookie that was used to check if the probe was
already called this time before the probes list changed. However the
same probes could've been called by another thread in between and thus
gotten a new cookie, and would then be called a second time.
https://bugzilla.gnome.org/show_bug.cgi?id=795987
In the case where the user sets a new padprobeinfo->data in a probe
where the data is a sticky event, the new sticky event should be automatically
sticked on the probed pad.
https://bugzilla.gnome.org/show_bug.cgi?id=795330
The following case can happen when two thread try to activate and
deactivate a pad at the same time:
T1: starts to deactivate, calls pre_activate(), sets in_activation
to TRUE and carries on
T2: starts to activate, calls pre_activate(), in_activation is TRUE
so it waits on the GCond
T1: calls post_activate(), tries to acquire the streaming lock ..
but can't because T2 is currently holding it
With this patch, the deadlock will no longer happen but does not
solve the problem that:
T2: will resume activation of the pad, set the pad mode to the target
one (PUSH or PULL) and eventually the streaming lock gets released.
T1: is able to finish calling post_activate() ... but ... the pad
wasn't deactivated (T2 was the last one to "activate" the pad.
https://bugzilla.gnome.org/show_bug.cgi?id=792341
When actually pushing an event, if we get GST_FLOW_CUSTOM_SUCCESS_1
(which is the conversion of GST_PAD_PROBE_HANDLED return value),
don't consider the stick event push as ignored, but as handled
Checking that the pad is in the correct mode before the parent is
checked makes the call always succeed if the mode is ok.
This fixes a race with ghostpad where gst_pad_activate_mode() could
trigger a g_critical() if the ghostpad is unparented while the
proxypad is deactivating, for instance if the ghostpad is released.
More specifically, gst_ghost_pad_internal_activate_push_default()'s
call to gst_pad_activate_mode() would fail if ghostpad doesn't have a
parent. With this patch it will return true of mode is already
correct.
The following could happen previously:
* T1: calls gst_pad_set_active()
* T2: currently (de)activating it
* T1: gst_pad_set_active() returns, caller assumes that the pad has
completed the requested (de)activation ... whereas it is not
the case since the actual (de)activation in T2 might still be
going on.
To ensure atomicity of pad (de)activation, we use a internal
variable (and cond) to ensure only one thread at a time goes through
the actual (de)activation block
https://bugzilla.gnome.org/show_bug.cgi?id=790431
checking whether we already were in the target GstPadMode was being
done too early and there was the risk that we *would* end up
(de)activating a pad more than once.
Instead, re-do the check for pad mode when entering the final pad
(de)activation block.
https://bugzilla.gnome.org/show_bug.cgi?id=790431
If multiple probes are set on a pad and one probe returns either
GST_PAD_PROBE_HANDLED or GST_PAD_PROBE_DROPPED we need to stop
calling the remaining probes.
https://bugzilla.gnome.org/show_bug.cgi?id=787243
Without the former, event changes (e.g. setting a pad offset) does not
take effect for the current buffer but only for the next one. Without
the latter, non-blocking event probes would not see any updated events
yet.
After b76ecfd992 introduced
GST_PAD_FLAG_ACCEPT_TEMPLATE, the performance penalty this
message is refering to (the cascading ACCEPT_CAPS query)
only applies to the cases where !GST_PAD_IS_ACCEPT_TEMPLATE
Enable it to prevent sending reconfigure when linking elements.
Useful for autoplugging when we know caps or bufferpools shouldn't change
to save doing caps renegotiation to end up with the same final scenario.
The no-reconfigure is not a proper check, it is a flag. It is implemented
as a GstPadLinkCheck to avoid creating another gst_pad_link variant.
https://bugzilla.gnome.org/show_bug.cgi?id=757653
A new event which precedes EOS in situations where we
need downstream to unblock any pads waiting on a stream
before we can send EOS. E.g, decodebin draining a chain
so it can switch pads.
https://bugzilla.gnome.org/show_bug.cgi?id=768995