Issue an invalid VIDIOC_EXPBUF ioctl to the driver to check if the
driver supports dmabuf export. If the driver does not implement the
IOCTL, the error is ENOTTY. Any other error codes mean that the driver
implements VIDIOC_EXPBUF.
https://bugzilla.gnome.org/show_bug.cgi?id=779466
The library has started preventing a lot of interesting use cases,
like CREATE_BUFS, DMABuf, usage of TRY_FMT. As the libv4l2 is totally
inactive and not maintained, we decided to disable it. As a convenience
we added a run-time environment that let you enable it for testing.
GST_V4L2_USE_LIBV4L2=1
This of course only works if you have enabled libv4l2 at build time.
While not documented, gst_video_colorimetry_matches() only accepts well
known names. Looking at the code and unit test, this seems to be on
purpose, so fixing by parsing the string and compating the colorimetry
structures.
skip_try_fmt_probes quirk is set, V4L2 object will not probe for
interlace-mode and colorimetry to avoid relying on try_fmt. This quirk
will be used by v4l2src to avoid desastrous startup time with slow
USB webcams.
When this quirk is enabled, caller will have to iterate over the
negotiated caps as it may contains unsupported formats. If the peer
didn't choose a specific interlace-mode, or colorimetry, the value
chosen by the driver is set into the caps. For this reason, when this
mode is enabled, gst_v4l2_object_set_format() will require writable
caps.
https://bugzilla.gnome.org/show_bug.cgi?id=785156
According to the spec,TRY_FMT cannot return EBUSY, though it can
return EINVAL if it was not possible to update the format to
something supported.
https://bugzilla.gnome.org/show_bug.cgi?id=785156
This is in preparation for removing slow TRY_FMT probes for
colorimetry. As we won't have tried that colorimetry we cannot
assume the driver will accept it.
https://bugzilla.gnome.org/show_bug.cgi?id=785156
This is in preparation from removing the slow TRY_FMT probes for
interlacing. As we won't have tried that interlace-mode already
we need to validate that the driver isn't refusing it.
https://bugzilla.gnome.org/show_bug.cgi?id=785156
Since 1.6, the transfer function for BT2020 has been changed from BT709
to BT2020_12. It's the same function, but with more precision. As a side
effect, the V4L2 colorpsace didn't match GStreamer colorspace. When
GStreamer ended up making a guess, it would not match anything supported
by V4L2 anymore. This this by using BT2020_12 for BT2020 colorspace and
BT2020 transfer function in replacement of BT709 whenever a 4K
resolution is detected.
The pixel aspect ratio is documented to not change unless the TV
Standard is changed. So this mean that this will be uniform across all
possible format and resolutions.
https://bugzilla.gnome.org/show_bug.cgi?id=784674
First step of a larger cleanup, all function from v4l2_calls are in fact
methods on GstV4l2Object. This split makes the code really confusing.
This also remove no longer unused macros.
Increasing this number fix a buffer starvation problem I'm hitting
with a "v4l2src ! kmssink" pipeline.
kmssink requests 2 buffer as it keeps a reference on the last rendered
one. So we were allocating 3 buffers for the pipeline.
Once the first 2 buffers have been pushed we ended up with:
- one buffer queued in v4l2
- one being pushed
- one kept as last rendered
If this 3rd buffer is released after that v4l2 used the first one to
capture we end up with a buffer starvation problem as no buffer is currently
queued in v4l2 for capture.
Fixing this by adding one extra buffer to the pipeline so when one
buffer is being pushed downstream the other can already be queued to
capture the next frame.
We were already adding 3 buffers if downstream didn't reply to the
allocation query. I reduced this number to 2 to compensate the extra
buffer which is now always added.
https://bugzilla.gnome.org/show_bug.cgi?id=783049
Without a specified framerate from the sink, the decoder frame interval
should be set using the framerate of the encoded video stream.
Therefore, the v4l2object should be able to change the framerate on the
output if the V4L2 device accepts it.
This is also necessary for mem2mem encoders so that their bitrate
calculation code may work correctly and they may report the correct
frame duration on the capture queue.
https://bugzilla.gnome.org/show_bug.cgi?id=779466
Update the image size according the amount of data we are going to
read/write. This workaround bugs in driver where the sizeimage provided
by TRY/S_FMT represent the buffer length (maximum size) rather then the expected
bytesused (buffer size).
https://bugzilla.gnome.org/show_bug.cgi?id=775564
Set MAY_BE_LEAKED flag on static pads returned by gst_v4l2_object_get_*_caps()
functions. Made functions thread safe by using g_once_init[enter|leave]
funtions.
https://bugzilla.gnome.org/show_bug.cgi?id=778453
Unlike former definitions of LOG_CAPS, the current implementation simply
expands to GST_DEBUG_OBJECT. The LOG_CAPS macro is rarely used and most
uses duplicate already existing GST_DEBUG_OBJECT lines. Therefore, the
caps are often printed twice which unnecessarily clutters the debug log.
Replace LOG_CAPS calls with GST_DEBUG_OBJECT, remove LOG_CAPS calls, and
delete the definition of LOG_CAPS.
https://bugzilla.gnome.org/show_bug.cgi?id=776899
After commit 1ea9735a I see these error while using the webcam
integrated in my laptop:
GStreamer-CRITICAL **: gst_value_list_get_size: assertion 'GST_VALUE_HOLDS_LIST (value)' failed
The issue is gst_v4l2src_value_simplify() was doing its job of
generating a single value, rather than the original list. That why,
when getting the list size, a critical warning was raised.
This patch takes advantage of the compiler optimizations to verify
first if the list was simplified, thus use it directly, otherwise,
if it is a list, verify its size.
https://bugzilla.gnome.org/show_bug.cgi?id=776106
If for some reason we fail to probe formats (all try_fmt calls fail, for
example), this is not a critical error, but we end up with an empty list
of interlace modes. This causes all subsequent negotiation to fail.
This patch fixes interlace-mode setting to be skipped if we failed to
detect any.
https://bugzilla.gnome.org/show_bug.cgi?id=775702
The monitor sets the object->element object as a GstObject. This
works for debug traces, but will assert for ELEMENT_ERROR. This
was the only case where that could happen. Add a check for that.
The same physical device can export multiple devices. In
this case, the capabilities field now contains a union of
all caps available from all exported V4L2 devices alongside
a V4L2_CAP_DEVICE_CAPS flag that should be used to decide
what capabilities to consider. In our case, we need the
ones from the exported device we are using.
https://bugzilla.gnome.org/show_bug.cgi?id=768195
Instead of relying on the default colorimetry chosen by
gst_video_info_set_format(), set info.colorimetry from the
values returned by G_FMT. This allows decoders to propagate
their input colorimetry downstream.
https://bugzilla.gnome.org/show_bug.cgi?id=766383
Move the extraction of colorimetry parameters from struct v4l2_format and the
setting of the identity matrix for RGB formats into the function to avoid code
duplication.
https://bugzilla.gnome.org/show_bug.cgi?id=766383
The gst_v4l2_object_acquire_format() function is used by v4l2videodec to obtain
the currently set capture format. Since G_FMT returns the coded size, the
visible size needs to be obtained from the compose rectangle in order to
negotiate it with downstream elements. The G_CROP call hasn't worked on mem2mem
capture queues for a long time. Instead use the G_SELECTION call to obtain the
compose rectangle and only fall back to G_CROP for ancient kernels.
https://bugzilla.gnome.org/show_bug.cgi?id=766381
Support for the updated V4L2_PIX_FMT_XRGB555 was added in commit
2538fee2fd however, when setting the format
for use in v4l2 ioctls, the old deprecated format is still used. Convert
this to the new accepted format type, as the preferred format.
https://bugzilla.gnome.org/show_bug.cgi?id=767300
A device can support more than one colorspace for a given image
dimension and pixel format. So we have to probe all the supported
colorspace and not only rely on the default one. Otherwise we could end
up with negotiation failure if the caps colorimetry field don't match
the v4l2 device default one even if the v4l2 could support such
colorimetry.
This patch enable probing if colorspace for both capture and output
device. It really makes sense for output device since the colorspace
shall be set by the application and a little less for capture device
which, at the moment, shall provide the colorspace; ie: the v4l2
specification seems to not take into account the fact that a capture
device could do colorspace conversion.
As a side effet, probing takes some times and so sligthly delay v4l2
initialization. Note that this patch only probe colorspace and not all
colorspace, matrix, transfer and range combination to avoid taking too
much time, especially with low-speed devices as full probing do 1782
ioctl.
https://bugzilla.gnome.org/show_bug.cgi?id=755937
gst_v4l2_object_get_caps_info() always return V4L2_PIX_FMT_SBGGR8
for all bayer formats. This is obviously broken if the device use
another ordering. Fix this by properly reading the format parameter.
https://bugzilla.gnome.org/show_bug.cgi?id=763318
Replicate V4L2_MAP_QUANTIZATION_DEFAULT macro behavior.
At #v4l it was described that documentation might be wrong and that
we should trust this macro instead.
https://bugzilla.gnome.org/show_bug.cgi?id=762529
This time, check if it's an RGB format and sets the transformation
matrix to identity. The rest of the colorimetry information is
meaningfull and shall be kept.
https://bugzilla.gnome.org/show_bug.cgi?id=759624
Use the new primaries and transfer function for Adobe RGB.
Explicitly list the colorimetry instead of using the default GStreamer
ones. The defaults for BT2020, for example, do not match.
Explicitly set the matrix of SRGB to RGB.
This change add all the new RGB based format. Those format removes the
ambiguity with the ALPHA channel. Some other missing multiplanar format
has been added with some additional cleanup.
This fixes wrong mapping for sRGB as in GStreamer sRGB correctly
apply to RGB formats, while in V4L2 it's an alias for sYCC. Also
add support for the new quantization (range), ycbcr_encoding (matrix)
and xfer_func (transfer) enumeration.
If propose_allocation() had not been called yet, it was possible that the driver was not asked at all.
In buffer pool: Consider minimum number of buffers requested by driver when setting config.
https://bugzilla.gnome.org/show_bug.cgi?id=746834
S_CROP ioctl is write-only and the device can adjust crop rectangle so
we query back the crop configuration after each S_CROP to know what has
been done.
https://bugzilla.gnome.org/show_bug.cgi?id=736133
In the V4L2 single-planar API, when format is semi-planar/planar,
drivers expect the planes to be contiguous in memory.
So this commit change the way we handle semi-planar/planar format
(n_planes > 1) when we use the single-planar API (group->n_mem == 1).
To check that planes are contiguous and have expected size, ie: no
padding. We test the fact that plane 'i' start address + plane 'i'
expected size equals to plane 'i + 1' start address. If not, we return
in error.
Math are done in bufferpool rather than in allocator because the
former is aware of video info.
https://bugzilla.gnome.org/show_bug.cgi?id=738013
When there is no allocation parameters in the query, enable copy
threshold. When this threshold is reached, the buffer pool will start
copying when the pool reaches a critical level. If the driver supports
CREATE_BUFS, this will be used instead.
Right now we try to be clever by detecting if device format have
changed or not, and skip setting format in this case. This is valid
behaviour with V4L2, but it's also very error prone. The rational
for not setting these all the time is for speed, though I can't
measure any noticeable gain on any HW I own. Also, until recently,
we where doing get/set on the format for each format we where
probing, making it near to impossible that the format would match.
This also fixes bug where we where skipping frame-rate setting if
format didn't change.
https://bugzilla.gnome.org/show_bug.cgi?id=740636
If the v4l2 queue support dmabuf select this buffer pool mode
and update the query with allocator.
This patch only concern exporting dmabuf and not importing dmabuf
fd from downstream element.
https://bugzilla.gnome.org/show_bug.cgi?id=699382
Rather than try and guess interlace support as part of checking supported
sizes, look for interlace support specifically in its own function.
As a cleanup, use V4L2_FIELD_ANY when probing sizes, which should result in
the driver doing the right thing.
With my capture setup, this gets me the following sample caps:
For 1080i resolution:
video/x-raw, format=(string)YUY2, width=(int)1920, height=(int)1080, pixel-aspect-ratio=(fraction)1/1, interlace-mode=(string)interleaved, framerate=(fraction){ 25/1, 30/1 }
For 720p resolution:
video/x-raw, format=(string)YUY2, width=(int)1280, height=(int)720, pixel-aspect-ratio=(fraction)1/1, interlace-mode=(string)progressive, framerate=(fraction){ 50/1, 60/1 }
For 576i/p resolution (both possible at the point of query):
video/x-raw, format=(string)YUY2, width=(int)720, height=(int)576, pixel-aspect-ratio=(fraction)1/1, interlace-mode=(string){ progressive, interleaved }, framerate=(fraction){ 25/1, 50/1 }
This, in turn, makes 576i work correctly; with the old code,
the caps would be interlace-mode=progressive for interlaced video.
https://bugzilla.gnome.org/show_bug.cgi?id=726194
When the v4l2 device is an output device, the application shall set the
colorspace. So map GStreamer colorimetry info to V4L2 colorspace and set
on set_format. In case we have no colorimetry information, we try to
guess it according to pixel format and video size.
https://bugzilla.gnome.org/show_bug.cgi?id=737579
Since we can get the minimum number of buffers needed by an output
device to work, use it to set min_latency which will determine how many
buffers are queued.
https://bugzilla.gnome.org/show_bug.cgi?id=736072
Most V4L2 ioctls like try_fmt will adjust input fields to match what the
hardware can do rather then returning -EINVAL. As is docmented here:
http://linuxtv.org/downloads/v4l-dvb-apis/vidioc-g-fmt.html
EINVAL is only returned if the buffer type field is invalid or not supported.
So upon requesting V4L2_FIELD_NONE devices which can only do interlaced
mode will change the field value to e.g. V4L2_FIELD_BOTTOM as only returning
half the lines is the closest they can do to progressive modes.
In essence this means that we've failed to get a (usable) progessive mode
and should fall back to interlaced mode.
This commit adds a check for having gotten a usable field value after the first
try_fmt, to force fallback to interlaced mode even if the try_fmt succeeded,
thereby fixing get_nearest_size failing on these devices.
https://bugzilla.gnome.org/show_bug.cgi?id=735660
They may have been modified by the ioctl even if it failed. This also makes
the S_FMT fallback path try progressive first, making it consistent with the
preferred TRY_FMT path.
https://bugzilla.gnome.org/show_bug.cgi?id=735660
If the minimum required buffer exceed V4L2 capacity, don't share down
pool. This allow support very high latency, like with x264enc default
encoding settings.
https://bugzilla.gnome.org/show_bug.cgi?id=732288
Some v4l2 devices could require a minimum buffers different from default
values. Rather than blindly propose a pool with min-buffers set to the
default value, it ask the device using control ioctl.
https://bugzilla.gnome.org/show_bug.cgi?id=733750
These checks are no longer required with recent change to the bufferpool. This
should allow changing the configuartion, hence the way forward renegotiation
support.
https://bugzilla.gnome.org/show_bug.cgi?id=728268
If special stride is needed and downstream don't support VideoMeta,
pool might be NULL in order to let the baseclass create a generic
pool. This would lead to assertion with on Exynos with:
gst-launch-1.0 -v filesrc location=mov ! qtdemux ! h264parse ! \
v4l2video8dec ! fakesink
https://bugzilla.gnome.org/show_bug.cgi?id=732707
The code enumerating STEPWISE framesizes would start from
(min_w, min_h) and then add (step_w, step_h) to get the
next framesize. However, it should really allow any width
from min_w to max_w with step_w and same for heights.
Secondly, we would add and probe each individual stepped
frame size to the caps as separate structure, which would
lead to hundreds if not thousands of structs ending up in
the probed caps. Use integer ranges with steps instead.
This was particularly noticable with the Raspberry Pi Cam.
https://bugzilla.gnome.org/show_bug.cgi?id=724521https://bugzilla.gnome.org/show_bug.cgi?id=732458https://bugzilla.gnome.org/show_bug.cgi?id=726521
This workaround from 2011 was causing 25 S_FMT ioctls to be sent
to my UVC webcam from under gst_v4l2_object_get_caps as it probes
all the formats. In total, this adds up to about 5 seconds of
execution time, or a 10 second delay while starting up cheese.
These ioctls come from a workaround from 2011 where TRY_FMT might
make changes to hardware settings, so S_FMT was used to restore
the original config:
https://bugzilla.gnome.org/show_bug.cgi?id=649067
The driver bug is now assumed fixed. Remove the workaround to fix the
long startup delay.
https://bugzilla.gnome.org/show_bug.cgi?id=732326
Fix the choice of min/max, don't override the min/max with own pool selected
size, correct other_pool is_active check, start from other_pool config when
configuring the other pool and finally validate the configuration.