Make sure that the sync_src pad has caps before the segment event.
Otherwise we might get a segment event before caps from the receive
RTCP pad, and then later when receiving RTCP packets will set caps.
This will results in a sticky event misordering warning
This fixes warnings in the rtpaux unit test but also in the
rtpaux and rtx examples in tests/examples/rtp
https://bugzilla.gnome.org/show_bug.cgi?id=746445
Before we only started it when either:
- there is no send RTP stream
or
- we received an RTP packet for sending
This could mean that if the send RTP pads are connected but never receive any
RTP data, and the same session is also used for receiving RTP/RTCP, we would
never start the RTCP thread and would never send RTCP for the receiving part
of the session.
This can be reproduced with a pipeline like:
gst-launch-1.0 rtpbin name=rtpbin \
udpsrc port=5000 ! "application/x-rtp, media=video, clock-rate=90000, encoding-name=H264" ! rtpbin.recv_rtp_sink_0 \
udpsrc port=5001 ! rtpbin.recv_rtcp_sink_0 \
rtpbin.send_rtcp_src_0 ! fakesink name=rtcp_fakesink silent=false async=false sync=false \
rtpbin.recv_rtp_src_0_2553225531_96 ! decodebin ! xvimagesink \
fakesrc ! valve drop=true ! rtpbin.send_rtp_sink_0 \
rtpbin.send_rtp_src_0 ! fakesink name=rtp_fakesink silent=false async=false sync=false -v
Before this change the rtcp_fakesink would never send RTCP for the receiving
part of the session (i.e. no receiver reports!), after the change it does.
And before and after this change it would send RTCP for the receiving part of
the session if the sender part was omitted (the last two lines).
They are very confusing for people, and more often than not
also just not very accurate. Seeing 'last reviewed: 2005' in
your docs is not very confidence-inspiring. Let's just remove
those comments.
When the internal-ssrc property changes, we want to send a reconfigure
upstream to make payloaders use the new suggested ssrc.
Using the internal-ssrc property to change the SSRC of a stream is not a
good idea and doesn't work when there are multiple senders, we want to
set the SSRC directly on the payloaders. Therefore, deprecate this
property.
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=725361
recv_rtp_sink: allow proxying of the allocation query.
send_rtp_sink: allow proxying of caps and allocation. This allows us to
query caps downstream as well as get an allocator from downstream.
send_rtp_src: allow proxy of caps, this makes the caps query do
upstream.
See https://bugzilla.gnome.org/show_bug.cgi?id=723850
When a collision is found on the internal ssrc, we have to change it.
Ideally, we want also the payloader upstream to follow this change and use
the new internal ssrc. Ideally we want this condition to be always met:
if there is one payloader sending on this session, its ssrc should match the
internal ssrc.
Remove bogus reconfigure event on collision, we don't want to send the event on
the receiving RTP pad and the collision event is now handling this
case.
See https://bugzilla.gnome.org/show_bug.cgi?id=711560
Make a method to suggest the best available SSRC. This is the SSRC of the last
created internal source and is used to instruct upstream to produce this
SSRC.
Also send stream-start and segment event on the RTCP pad.
We don't need to send anything on the sync_src pad because we
already forwarded all incomming events.
Only delay the RTCP thread when we are a sender, which we can know because we
have a send_rtp_src pad. Otherwise we might delay the RTCP thread if we
are only a receiver and then there is no code path that wakes up the
RTCP thread and we end up without RTCP packets.
Delay sending the first RTCP packet until we have sent the first RTP packet.
Otherwise we will send out a Receiver Report instead of a sender report.
See https://bugzilla.gnome.org/show_bug.cgi?id=691400
When we make a mapping between an RTP timestamp and an NTP timestamp, include
the downstream latency applied to the sinks. This makes it possible to have
both sinks run with different latencies and still have correct sync on the
client. It also is more correct because the RTP timestamp in the SR report will
actually correspond more closely to the NTP time it was sent on the server.
For pipelines with high latency on the sender side, this actually allows a
GStreamer receiver to perform synchronisation instead of dropping the RTCP
packets.
There is no need to cast the event functions and only causes problems later when
we change the signature later and things silently compiles wrong code.
Inform the source when caps changed. This was removed in the port to 1.0
leaving the source unaware of the clock-rate and unable to interpollate
rtp timestamps for SR packets.
When use-pipeline-clock is set, use the running-time of the
pipeline to calculate the NTP timestamps. This method would previously
only work when the base-time is set to 0 but with this change it can
also work with different offsets and we can also implement pause/resume
of the sender and receiver now.