Add a new property "do-aggregate"* to the H.264 RTP payloader which
enables STAP-A aggregation as per [RFC-6184][1]. With aggregation enabled,
packets are bundled instead of sent immediately, up until the MTU size.
Bundles also end at access unit boundaries or when packets have to be
fragmented.
*: The property-name is kept generic since it might apply more widely,
e.g. STAP-B or MTAP.
[1]: https://tools.ietf.org/html/rfc6184#section-5.7
Closes https://gitlab.freedesktop.org/gstreamer/gst-plugins-good/issues/434
In the case of reordered packets, calculating skew would cause
pts values to be off. Only calculate skew when packets come
in as expected. Also, late RTX packets should not trigger
clock skew adjustments.
Fixes#612
If, say, a rtx-packet arrives really late, this can have a dramatic
effect on the jitterbuffer clock-skew logic, having it being reset
and losing track of the current dts-to-pts calculations, directly affecting
the packets that arrive later.
This is demonstrated in the test, where a RTX packet is pushed in really
late, and without this patch the last packet will have its PTS affected
by this, where as a late RTX packet should be redundant information, and
not affect anything.
This patch corrects the delay set on EXPECTED timers that are added when
processing gaps. Previously the delay could be too small so that
'timout + delay' was much less than 'now', causing the following retries
to be scheduled too early. (They were sent earlier than
rtx-retry-timeout after the previous timeout.)
Turns out that the "big-gap"-logic of the jitterbuffer has been horribly
broken.
For people using lost-events, an RTP-stream with a gap in sequencenumbers,
would produce exactly that many lost-events immediately.
So if your sequence-numbers jumped 20000, you would get 20000 lost-events
in your pipeline...
The test that looks after this logic "test_push_big_gap", basically
incremented the DTS of the buffer equal to the gap that was introduced,
so that in fact this would be more of a "large pause" test, than an
actual gap/discontinuity in the sequencenumbers.
Once the test was modified to not increment DTS (buffer arrival time) with
a similar gap, all sorts of crazy started happening, including adding
thousands of timers, and the logic that should have kicked in, the
"handle_big_gap_buffer"-logic, was not called at all, why?
Because the number max_dropout is calculated using the packet-rate, and
the packet-rate logic would, in this particular test, report that
the new packet rate was over 400000 packets per second!!!
I believe the right fix is to don't try and update the packet-rate if
there is any jumps in the sequence-numbers, and only do these calculations
for nice, sequential streams.
In this change we now protect the internal srcpads list using the
stream lock and limit usage of the internal stream lock to
preventing data flowing on the other src pad type while creating
and signalling the new pad.
This fixes a deadlock with RTPBin shutdown lock. These two locks would
end up being taken in two different order, which caused a deadlock. More
generally, we should not rely on a streamlock when handling out-of-band
data, so as a side effect, we should not take a stream lock when
iterating internal links.
We recently added code to remove outdate NACK to avoid using bandwidth
for packet that have no chance of arriving on time. Though, this had a
side effect, which is that it was to get an early RTCP packet with no
feedback into it. This was pretty useless but also had a side effect,
which is that the RTX RTT value would never be updated. So we we stared
having late RTX request due to high RTT, we'd never manage to recover.
This fixes the regression by making sure we keep at least one NACK in
this situation. This is really light on the bandwidth and allow for
quick recover after the RTT have spiked higher then the jitterbuffer
capacity.
Right now, we may call on-new-ssrc after we have processed the first
RTP packet. This prevents properly configuring the source as some
property like "probation" are copied internally for use as a
decreasing counter. For this specific property, it prevents the
application from disabling probation on auxiliary sparse stream.
Probation is harmful on sparse streams since the probation algorithm
assume frequent and contiguous RTP packets.
We used to split the NACK if a smaller seqnum of a range of seqnum was
submited. This test also make sure that the three operations (append,
prepend, update) works properly.
Calling rtp_session_send_rtcp before marking the source as requiring a
pli/fir/nack meant the rtcp_thread could be scheduled and start running
before the source was updated. This meant the request would not be sent
early but instead was transmitted with the next regular RTCP packet.
Add test for nack generation.
Add a test to verify that stats about sent and received packets are
correct even when using buffer lists.
NOTE: the newly introduced get_session_source_stats() selects the
desired source (sender or receiver) by filtering them by type (using the
get_sender parameter) rather than by ssrc because this simplifies the
code and it's good enough for testing purposes as there is usually one
source per type in the test setup.
Filtering by ssrc would have required handling asynchronous signals like
"on-new-sender-ssrc", with the relative locking, just to retrieve the
actual ssrc of the sender.
The tests create a buffer list and then use the chain_list callback to
verify that the correct packets have been pushed.
Move the creation and validation code next to each other so that the
reader can more easily understand what is going on.
While at it add some comments to introduce the two related functions.
Make it possible to differentiate between the position in the list and
the packet index in the global structures in check_packet, in some
future case the list may change, in case some element removes a buffer
from the list, and the two indices may not coincide.
Port the rtpbin_buffer_list test to GStreamer 1.0 and re-enable it.
Some other changes include:
- the check on the caps has been moved from the buffer level to the
pad level;
- remove underscore prefix from static functions names, this is not
idiomatic in C and rarely used in the other tests;
- the unused header_buffer variable has been removed;
- check_group() has been renamed to check_packet() because in
GStreamer 1.0 there is no concept of "group" anymore, the comments
have also been updated to reflect this.
Tests might take a bit longer, esp. when run under valgrind
and/or they're running on the CI with other things going on,
so let's just bump the timeout to something higher and let
the test runner time us out if needed.
False positive for the three variables but some warnings like:
../tests/check/elements/matroskamux.c:875:10:
warning: 'chapters_offset' may be used uninitialized in this function [-Wmaybe-uninitialized]
*index = chapters_offset;
~~~~~~~^~~~~~~~~~~~~~~~~
The above is false positive as there is a gboolean to check if it was
initialized or not (found_chapters_declaration).
This reverts commit dcd3ce9751.
This functionality was implemented for gstopenwebrtc, but it
turned out this was not actually needed for webrtc bundling
support, as shown in webrtcbin. It also doesn't correspond
to any standards.
This is an API break, but nothing should actually depend on
this, at least not for its initial purpose.
Changes in rtpbin.c were reverted manually, to preserve some
refactoring that had occurred in the original commit.
Fixes#537
gstreamer!55 makes some changes to how the `error-after` counter works
which breaks this test. This change makes the test not rely on the
ability to alter `error-after` at runtime and explicitly stops and
starts the harness before pushing data.
An alternative would be to add another argument to
`harness_rtpulpfecdec` to set `error-after` on construction but that's
slightly more long-winded. so I went for this approach instead.
Fixes#532, even though that's already closed.
The initial mission statement for this test was:
* demonstrate usage of the request-aux-* signals in rtpbin
* test the rtx elements
We have examples that serve the first use case, and better
(harnessed) tests for the second use case.
This test is slow and racy, it served its purpose but can now
be removed.
Fixes#533
When the EOS event is received, run all timers immediately and avoid
pushing the EOS downstream before this has been run. This ensures that
the lost packet statistics are accurate.
The teardown of the pads checks the refcount, but there are timers
inside the jitterbuffer that can push things, so if we're not lucky,
things could be pushed while the pads are being shut down. Putting the
jitterbuffer to NULL first avoids this.
Always wait with starting the RTCP thread until either a RTP or RTCP
packet is sent or received. Special handling is needed to make sure the
RTCP thread is started when requesting an early RTCP packet.
We want to wait with starting the RTCP thread until it's needed in order
to not send RTCP packets for an inactive source.
https://bugzilla.gnome.org/show_bug.cgi?id=795139
This mode is useful for muxers that can take a long time to finalize a
file. Instead of blocking the whole upstream pipeline while the muxer is
doing its stuff, we can unlink it and spawn a new muxer+sink combination
to continue running normally.
This requires us to receive the muxer and sink (if needed) as factories,
optionally accompanied by their respective properties structures. Also
added the muxer-added and sink-added signals, in case custom code has to
be called for them.
https://bugzilla.gnome.org/show_bug.cgi?id=783754
If obtain_internal_source() returns a source that is not internal it
means there exists a non-internal source with the same ssrc. Such an
ssrc collision should be handled by sending a GstRTPCollision event
upstream and choose a new ssrc, but for now we simply drop the packet.
Trying to process the packet further will cause it to be pushed
usptream (!) since the source is not internal (see source_push_rtp()).
https://bugzilla.gnome.org/show_bug.cgi?id=795139
If there is an external source which is about to timeout and be removed
from the source hashtable and we receive feedback RTCP packet with the
media ssrc of the source, we unlock the session in
rtp_session_process_feedback before emitting 'on-feedback-rtcp' signal
allowing rtcp timer to kick in and grab the lock. It will get rid of
the source and rtp_session_process_feedback will be left with RTPSource
with ref count 0.
The fix is to grab the ref to the RTPSource object in
rtp_session_process_feedback.
https://bugzilla.gnome.org/show_bug.cgi?id=795139
These are the sources we send from, so there is no reason to
report receive statistics for them (as we do not receive on them,
and the remote side has no knowledge of them).
https://bugzilla.gnome.org/show_bug.cgi?id=795139
ULP FEC, as defined in RFC 5109, has the protected and protection
packets sharing the same ssrc, and a different payload type, and
implies rewriting the seqnums of the protected stream when encoding
the protection packets. This has the unfortunate drawback of not
being able to tell whether a lost packet was a protection packet.
rtpbasedepayload relies on gaps in the seqnums to set the DISCONT
flag on buffers it outputs. Before that commit, this created two
problems:
* The protection packets don't make it as far as the depayloader,
which means it will mark buffers as DISCONT every time the previous
packets were protected
* While we could work around the previous issue by looking at
the protection packets ignored and dropped in rtpptdemux, we
would still mark buffers as DISCONT when a FEC packet was lost,
as we cannot know that it was indeed a FEC packet, even though
this should have no impact on the decoding of the stream
With this commit, we consider that when using ULPFEC, gaps in
the seqnums are not a reliable indicator of whether buffers should
be marked as DISCONT or not, and thus rewrite the seqnums on
the decoding side as well to form a perfect sequence, this
obviously doesn't prevent the jitterbuffer from doing its job
as the ulpfec decoder is downstream from it.
https://bugzilla.gnome.org/show_bug.cgi?id=794909
Looping the test 500 times to only execute the test once every
33 times means we inited and deinited gstreamer 467 times
for no reason at all, which was annoying when running the test
with valgrind.
We expose a set of new elements:
* ULPFEC encoder / decoder
* A storage element, which should be placed before jitterbuffers,
and is used to store packets in order to attempt reconstruction
after the jitterbuffer has sent PacketLost events
* RED encoder / decoder (RFC 2198), these are necessary to
use FEC in webrtc, as browsers will propose and expect ulpfec
packets to be wrapped in red packets
With contributions from:
Mathieu Duponchelle <mathieu@centricular.com>
Sebastian Dröge <sebastian@centricular.com>
https://bugzilla.gnome.org/show_bug.cgi?id=792696
When the signal returns a floating reference, as its return type
is transfer full, we need to sink it ourselves before passing
it to gst_bin_add (which is transfer floating).
This allows us to unref it in bin_remove_element later on, and
thus to also release the reference we now own if the signal
returns a non-floating reference as well.
As we now still hold a reference to the element when removing it,
we also need to lock its state and setting it to NULL before
unreffing it
Also update the request_aux_sender test.
https://bugzilla.gnome.org/show_bug.cgi?id=792543
TOC support in mastroskamux has been deactivated for a couple of years. This commit updates it to recent GstToc evolutions and introduces toc unit tests for both matroska-mux and matroska-demux.
There are two UIDs for Chapters in Matroska's specifications:
- The ChapterUID is a mandatory unsigned integer which internally refers to a given chapter. Except for title & language which use dedicated fields, this UID can also be used to add tags to the Chapter. The tags come in a separate section of the container.
- The ChapterStringUID is an optional UTF-8 string which also uniquely refers to a chapter but from an external perspective. It can act as a "WebVTT cue identifier" which "can be used to reference a specific cue, for example from script or CSS".
During muxing, the ChapterUID is generated and checked for unicity, while the ChapterStringUID receives the user defined UID. In order to be able to refer to chapters from the tags section, we maintain an internal Toc tree with the generated ChapterUID.
When demuxing, the ChapterStringUIDs (if available) are assigned to the GstTocEntries UIDs and an internal toc mimicking the toc is used to keep track of the ChapterUIDs and match the tags with the appropriate GstTocEntries.
https://bugzilla.gnome.org/show_bug.cgi?id=790686
Sometimes all the buffers are received before the time we lock the
check_mutex, in which case g_cond_wait will wait forever for another
one. Just check if this is the case before waiting.
https://bugzilla.gnome.org/attachment.cgi?id=358397
This patch simplifies the tests (44% less code) and
makes them much more readable.
The provided SessionHarness also makes it much easier
to write new tests for rtpsession.
https://bugzilla.gnome.org/show_bug.cgi?id=791070
If the use-robust-muxing property is set, check if the
assigned muxer has reserved-max-duration and
reserved-duration-remaining properties, and if so set
the configured maximum duration to the reserved-max-duration
property, and monitor the remaining space to start
a new file if the reserved header space is about to run out -
even though it never ought to.
Switching to a new fragment because the input caps have
changed didn't properly end the previous file. Use the normal
EOS sequence to ensure that happens. Add a test that it works.
SoupSession's ssl-ca-file property is deprecated. Use the recommended
tls-database property.
This is a bit more complex as it requires creating a GTlsFileDatabase
object for an absolute (!) path to the CA certificates file.
https://bugzilla.gnome.org/show_bug.cgi?id=784005
Even though hooked up to the build system, it's clear that no one
has ever built or used this with GStreamer 1.x. It wants to link
against libgstinterfaces, which no longer exists. And uses 0.10-style
raw audio caps. And the last meaningful change was done in 2009.
Let's just remove it.
streamheader and codec_data buffers fields are only meant to be
in the negotiated caps, not the template caps.
Fixes false-positive leaks of those buffers detected by the leaks
tracer, as template caps are static, and we decided to not include
code in gstreamer core to handle this unusual case of template caps
having buffers in them.
https://bugzilla.gnome.org/show_bug.cgi?id=768762
Some radio streams uses StreamTitle='' to reset the title after a
track stopped playing, e.g. while the host talks between tracks or
during news segments.
This change forces an empty tag object to be distributed if
StreamTitle or StreamUrl is received with empty value, thus allowing
downstream elements to get notified about this.
https://bugzilla.gnome.org/show_bug.cgi?id=778437
Add a new signal for formatting the filename, which receives
a GstSample containing the first buffer from the reference
stream that will be muxed into that file.
Useful for creating filenames that are based on the
running time or other attributes of the buffer.
To make it work, opening of files and setting filenames is
now deferred until there is some data to write to it,
which also requires some changes to how async state changes
and gap events are handled.
Now matroskamux mark all packets of audio-only streams as keyframes so
in test_block_group after pushing the test audio data 4 buffers are produced
and not more 2. The last buffer is the original data and must match with what
pushed. The remaining ones are matroskamux headers
https://bugzilla.gnome.org/show_bug.cgi?id=754696
* Changed PCMU->TEST for common macros
* Changed verify-functions (lost & rtx) into macros.
* Remove option to add marker-bit for test-buffers (not used anywhere)
* Add new push_test_buffer function that makes sure there are correlation
between dts and the time on the clock. (classic test-mistake)
* Established a generic starting-point for tests with the
construct_deterministic_initial_state function and use it where
applicable, which removes lots of "boilerplate" everywhere.
* Add basic lost-event test
* Remove as much "magic constants" as possible.
* Remove 3 tests that no longer are testing anything that others don't,
and was completely unmaintainable.
* Remove unnecessary use of the testclock
* Verify each test is testing what it actually says it does (and modify
where it doesn't)
In general, make the tests much smaller, better, more maintainable and
readable.
https://bugzilla.gnome.org/show_bug.cgi?id=774409
A new signal named on-bundled-ssrc is provided and can be
used by the application to redirect a stream to a different
GstRtpSession or to keep the RTX stream grouped within the
GstRtpSession of the same media type.
https://bugzilla.gnome.org/show_bug.cgi?id=772740
When doing rtx, the jitterbuffer will always add an rtx-timer for the next
sequence number.
In the case of the packet corresponding to that sequence number arriving,
that same timer will be reused, and simply moved on to wait for the
following sequence number etc.
Once an rtx-timer expires (after all retries), it will be rescheduled as
a lost-timer instead for the same sequence number.
Now, if this particular sequence-number now arrives (after the timer has
become a lost-timer), the reuse mechanism *should* now set a new
rtx-timer for the next sequence number, but the bug is that it does
not change the timer-type, and hence schedules a lost-timer for that
following sequence number, with the result that you will have a very
early lost-event for a packet that might still arrive, and you will
never be able to send any rtx for this packet.
Found by Erlend Graff - erlend@pexip.comhttps://bugzilla.gnome.org/show_bug.cgi?id=773891
The lost-event was using a different time-domain (dts) than the outgoing
buffers (pts). Given certain network-conditions these two would become
sufficiently different and the lost-event contained timestamp/duration
that was really wrong. As an example GstAudioDecoder could produce
a stream that jumps back and forth in time after receiving a lost-event.
The previous behavior calculated the pts (based on the rtptime) inside the
rtp_jitter_buffer_insert function, but now this functionality has been
refactored into a new function rtp_jitter_buffer_calculate_pts that is
called much earlier in the _chain function to make pts available to
various calculations that wrongly used dts previously
(like the lost-event).
There are however two calculations where using dts is the right thing to
do: calculating the receive-jitter and the rtx-round-trip-time, where the
arrival time of the buffer from the network is the right metric
(and is what dts in fact is today).
The patch also adds two tests regarding B-frames or the
“rtptime-going-backwards”-scenario, as there were some concerns that this
patch might break this behavior (which the tests shows it does not).
The new timeout is always going to be (timeout + delay), however, the
old behavior compared the current timeout to just (timeout), basically
being (delay) off.
This would happen if rtx-delay == rtx-retry-timeout, with the result that
a second rtx attempt for any buffers would be scheduled immediately instead
of after rtx-delay ms.
Simply calculate (new_timeout = timeout + delay) and then use that instead.
https://bugzilla.gnome.org/show_bug.cgi?id=773905
It's been broken for years, and it's unlikely it will ever
be fixed for collectpads/videomixer now that there's compositor
which works fine. So let's disable it, since all it does
is that it creates noise that distracts from other failures.
Also see the corresponding adder bug as it failed in the same way:
https://bugzilla.gnome.org/show_bug.cgi?id=708891
It seems that the forked processes all attempt to handle the listening
socket from the server, and only one has to shutdown the socket to break
the server completely.
Create a new server inside each test to avoid this.
https://bugzilla.gnome.org/show_bug.cgi?id=772656
The tests accumulate buffers in GstCheck's buffers list, and the list is
not (consistently) reset between tests. Do that and remove the now
conflicting unrefs for outbuffers.
https://bugzilla.gnome.org/show_bug.cgi?id=772644
The basic idea is this:
1. For *larger* rtx-rtt, weigh a new measurement as before
2. For *smaller* rtx-rtt, be a bit more conservative and weigh a bit less
3. For very large measurements, consider them "outliers"
and count them a lot less
The idea being that reducing the rtx-rtt is much more harmful then
increasing it, since we don't want to be underestimating the rtt of the
network, and when using this number to estimate the latency you need for
you jitterbuffer, you would rather want it to be a bit larger then a bit
smaller, potentially losing rtx-packets. The "outlier-detector" is there
to prevent a single skewed measurement to affect the outcome too much.
On wireless networks, these are surprisingly common.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
Assuming equidistant packet spacing when that's not true leads to more
loss than necessary in the case of reordering and jitter. Typically this
is true for video where one frame often consists of multiple packets
with the same rtp timestamp. In this case it's better to assume that the
missing packets have the same timestamp as the last received packet, so
that the scheduled lost timer does not time out too early causing the
packets to be considered lost even though they may arrive in time.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
There is no need to schedule another EXPECTED timer if we're already
past the retry period. Under normal operation this won't happen, but if
there are more timers than the jitterbuffer is able to process in
real-time, scheduling more timers will just make the situation worse.
Instead, consider this packet as lost and move on. This scenario can
occur with high loss rate, low rtt and high configured latency.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
This patch fixes an issue with the estimated gap duration when there is
a gap immediately after a lost timer has been processed. Previously
there was a discrepancy beteen the gap in seqnum and gap in dts which
would cause wrong calculated duration. The issue would only be seen with
retranmission enabled since when it's disabled lost timers are only
created when a packet is received and the actual gap length and last dts
is known.
https://bugzilla.gnome.org/show_bug.cgi?id=769768
Stats should also be collected for unsuccessful packets.
rtx-rtt is very important for determining the necessary configured
latency on the jitterbuffer. It's especially important to be able to
increase the latency when retransmitted packets arrive too late and are
considered lost. This patch includes these late packets in the
calculation of the various rtx stats, making them more correct and
useful.
Also in the case where the original packet arrives after a NACK is sent,
the received RTX packet should update the stats since it provides useful
information about RTT.
The RTT is only updated if and only if all requested retranmissions are
received. That way the RTT is guaranteed to make sense. If not we don't
know which request the packet is a response to and the RTT may be bogus.
A consequence of this patch is that RTT is not updated for a request
when one of the RTX packets for that seqnum is lost, but that since
measured RTT will be more accurate.
The implementation store the RTX information from the timed out timers
and use this when the retransmitted packet arrives. For performance
these timers are stored separately from the "normal" timers in order to
not impact performance (see attached performance test).
https://bugzilla.gnome.org/show_bug.cgi?id=769768