Now that locking exclusively dows not always succeed, we need to signal
the failure case from gst_memory_init.
Rather than introducing an API or funcionality change to gst_memory_init,
workaround by checking exclusivity in the calling code.
https://bugzilla.gnome.org/show_bug.cgi?id=750172
gst_memory_lock (mem, WRITE | EXCLUSIVE);
gst_memory_lock (mem, WRITE | EXCLUSIVE);
Succeeds when the part-miniobject.txt design doc suggests that this should fail:
"A gst_mini_object_lock() can fail when a WRITE lock is requested and
the exclusive counter is > 1. Indeed a GstMiniObject object with an
exclusive counter 1 is locked EXCLUSIVELY by at least 2 objects and is
therefore not writable."
https://bugzilla.gnome.org/show_bug.cgi?id=750172
DllMain should not be relied on for anything except storing the DLL handle.
It should also not be defined for static builds, but doing so is not
straightforward and is mostly harmless, so let's just add a comment about that
for now.
GstFlagSet is a new type designed for negotiating sets
of boolean capabilities flags, consisting of a 32-bit
flags bitfield and 32-bit mask field. The mask field
indicates which of the flags bits an element needs to have
as specific values, and which it doesn't care about.
This allows efficient negotiation of arrays of boolean
capabilities.
The standard serialisation format is FLAGS:MASK, with
flags and mask fields expressed in hexadecimal, however
GstFlagSet has a gst_register_flagset() function, which
associates a new GstFlagSet derived type with an existing
GFlags gtype. When serializing a GstFlagSet with an
associated set of GFlags, it also serializes a human-readable
form of the flags for easier debugging.
It is possible to parse a GFlags style serialisation of a
flagset, without the hex portion on the front. ie,
+flag1/flag2/flag3+flag4, to indicate that
flag1 & flag4 must be set, and flag2/flag3 must be unset,
and any other flags are don't-care.
https://bugzilla.gnome.org/show_bug.cgi?id=746373
Just create the cancellable fd once and keep it around instead
of creating/closing it for every single packet. Since we spend
most time waiting for packets, an fd is alloced and in use pretty
much all the time anyway.
We were segfaulting because g_sequence_search was returning the iter_end,
and that iterator does not contain anything and thus should not be used
directly
The old gst_object_has_ancestor will call the new code. This establishes the
symetry with the new gst_object_has_as_parent.
API: gst_object_has_as_ancestor()
In basesink functions gst_base_sink_chain_unlocked(), below code is used to
checking if buffer is late before doing prepare call to save some effort:
if (syncable && do_sync)
late =
gst_base_sink_is_too_late (basesink, obj, rstart, rstop,
GST_CLOCK_EARLY, 0, FALSE);
if (G_UNLIKELY (late))
goto dropped;
But this code has problem, it should calculate jitter based on current media
clock, rather than just passing 0. I found it will drop all the frames when
rewind in slow speed, such as -2X.
https://bugzilla.gnome.org/show_bug.cgi?id=749258
Since frame->priv->discont was cleared earlier,
GST_BASE_PARSE_FLAG_LOST_SYNC was never being set.
Take the chance to refactor the frame creation a bit to
organize the flags setting and reset.
https://bugzilla.gnome.org/show_bug.cgi?id=738237
Subsequent EOS will push on the source pad that already received
EOS and that will make the event function return FALSE. It needs
only to push the first one and only return TRUE for the subsequent
ones.