mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2025-01-27 09:38:17 +00:00
spectrum: refactor processing loop for block based operation
Previously the chain function was working sample frame based. In each cycle it was checking if it is time to run a fft or if it is time to send a message. Now we changed the data transform functions to work on a block of data and calculate the max length until either {end-of-data, do-fft, do-msg}. This allows us also to avoid the duplicated code for the single and multi-channel case (as the transformers have the same signature now).
This commit is contained in:
parent
51f25f371b
commit
fb071dd89e
2 changed files with 317 additions and 281 deletions
|
@ -1,6 +1,6 @@
|
|||
/* GStreamer
|
||||
* Copyright (C) <1999> Erik Walthinsen <omega@cse.ogi.edu>
|
||||
* <2006> Stefan Kost <ensonic@users.sf.net>
|
||||
* <2006,2011> Stefan Kost <ensonic@users.sf.net>
|
||||
* <2007-2009> Sebastian Dröge <sebastian.droege@collabora.co.uk>
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
|
@ -484,189 +484,274 @@ gst_spectrum_stop (GstBaseTransform * trans)
|
|||
|
||||
/* mixing data readers */
|
||||
|
||||
static gfloat
|
||||
input_data_mixed_float (const guint8 * data, guint channels, gfloat max_value)
|
||||
static void
|
||||
input_data_mixed_float (const guint8 * _in, gfloat * out, guint len,
|
||||
guint channels, gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
guint i;
|
||||
gfloat v = 0.0;
|
||||
gfloat *in = (gfloat *) data;
|
||||
guint i, j, ip = 0;
|
||||
gfloat v;
|
||||
gfloat *in = (gfloat *) _in;
|
||||
|
||||
for (i = 0; i < channels; i++)
|
||||
v += in[i];
|
||||
|
||||
return v / channels;
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_mixed_double (const guint8 * data, guint channels, gfloat max_value)
|
||||
{
|
||||
guint i;
|
||||
gfloat v = 0.0;
|
||||
gdouble *in = (gdouble *) data;
|
||||
|
||||
for (i = 0; i < channels; i++)
|
||||
v += in[i];
|
||||
|
||||
return v / channels;
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_mixed_int32 (const guint8 * data, guint channels, gfloat max_value)
|
||||
{
|
||||
guint i;
|
||||
gfloat v = 0.0;
|
||||
gint32 *in = (gint32 *) data;
|
||||
|
||||
for (i = 0; i < channels; i++)
|
||||
v += in[i] * 2 + 1;
|
||||
|
||||
return v / channels;
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_mixed_int32_max (const guint8 * data, guint channels,
|
||||
gfloat max_value)
|
||||
{
|
||||
guint i;
|
||||
gfloat v = 0.0;
|
||||
gint32 *in = (gint32 *) data;
|
||||
|
||||
for (i = 0; i < channels; i++)
|
||||
v += in[i] / max_value;
|
||||
|
||||
return v / channels;
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_mixed_int24 (const guint8 * data, guint channels, gfloat max_value)
|
||||
{
|
||||
guint i;
|
||||
gfloat v = 0.0;
|
||||
|
||||
for (i = 0; i < channels; i++) {
|
||||
#if G_BYTE_ORDER == G_BIG_ENDIAN
|
||||
gint32 value = GST_READ_UINT24_BE (data);
|
||||
#else
|
||||
gint32 value = GST_READ_UINT24_LE (data);
|
||||
#endif
|
||||
if (value & 0x00800000)
|
||||
value |= 0xff000000;
|
||||
v += value * 2 + 1;
|
||||
for (j = 0; j < len; j++) {
|
||||
v = in[ip++];
|
||||
for (i = 1; i < channels; i++)
|
||||
v += in[ip++];
|
||||
out[op] = v / channels;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
|
||||
return v / channels;
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_mixed_int24_max (const guint8 * data, guint channels,
|
||||
gfloat max_value)
|
||||
static void
|
||||
input_data_mixed_double (const guint8 * _in, gfloat * out, guint len,
|
||||
guint channels, gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
guint i;
|
||||
gfloat v = 0.0;
|
||||
guint i, j, ip = 0;
|
||||
gfloat v;
|
||||
gdouble *in = (gdouble *) _in;
|
||||
|
||||
for (i = 0; i < channels; i++) {
|
||||
#if G_BYTE_ORDER == G_BIG_ENDIAN
|
||||
gint32 value = GST_READ_UINT24_BE (data);
|
||||
#else
|
||||
gint32 value = GST_READ_UINT24_LE (data);
|
||||
#endif
|
||||
if (value & 0x00800000)
|
||||
value |= 0xff000000;
|
||||
v += value / max_value;
|
||||
for (j = 0; j < len; j++) {
|
||||
v = in[ip++];
|
||||
for (i = 1; i < channels; i++)
|
||||
v += in[ip++];
|
||||
out[op] = v / channels;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
|
||||
return v / channels;
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_mixed_int16 (const guint8 * data, guint channels, gfloat max_value)
|
||||
static void
|
||||
input_data_mixed_int32 (const guint8 * _in, gfloat * out, guint len,
|
||||
guint channels, gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
guint i;
|
||||
gfloat v = 0.0;
|
||||
gint16 *in = (gint16 *) data;
|
||||
guint i, j, ip = 0;
|
||||
gint32 *in = (gint32 *) _in;
|
||||
gfloat v;
|
||||
|
||||
for (i = 0; i < channels; i++)
|
||||
v += in[i] * 2 + 1;
|
||||
|
||||
return v / channels;
|
||||
for (j = 0; j < len; j++) {
|
||||
v = in[ip++] * 2 + 1;
|
||||
for (i = 1; i < channels; i++)
|
||||
v += in[ip++] * 2 + 1;
|
||||
out[op] = v / channels;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_mixed_int16_max (const guint8 * data, guint channels,
|
||||
gfloat max_value)
|
||||
static void
|
||||
input_data_mixed_int32_max (const guint8 * _in, gfloat * out, guint len,
|
||||
guint channels, gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
guint i;
|
||||
guint i, j, ip = 0;
|
||||
gint32 *in = (gint32 *) _in;
|
||||
gfloat v;
|
||||
|
||||
for (j = 0; j < len; j++) {
|
||||
v = in[ip++] / max_value;
|
||||
for (i = 1; i < channels; i++)
|
||||
v += in[ip++] / max_value;
|
||||
out[op] = v / channels;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
input_data_mixed_int24 (const guint8 * _in, gfloat * out, guint len,
|
||||
guint channels, gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
guint i, j;
|
||||
gfloat v = 0.0;
|
||||
gint16 *in = (gint16 *) data;
|
||||
|
||||
for (i = 0; i < channels; i++)
|
||||
v += in[i] / max_value;
|
||||
for (j = 0; j < len; j++) {
|
||||
for (i = 0; i < channels; i++) {
|
||||
#if G_BYTE_ORDER == G_BIG_ENDIAN
|
||||
gint32 value = GST_READ_UINT24_BE (_in);
|
||||
#else
|
||||
gint32 value = GST_READ_UINT24_LE (_in);
|
||||
#endif
|
||||
if (value & 0x00800000)
|
||||
value |= 0xff000000;
|
||||
v += value * 2 + 1;
|
||||
_in += 3;
|
||||
}
|
||||
out[op] = v / channels;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
return v / channels;
|
||||
static void
|
||||
input_data_mixed_int24_max (const guint8 * _in, gfloat * out, guint len,
|
||||
guint channels, gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
guint i, j;
|
||||
gfloat v = 0.0;
|
||||
|
||||
for (j = 0; j < len; j++) {
|
||||
for (i = 0; i < channels; i++) {
|
||||
#if G_BYTE_ORDER == G_BIG_ENDIAN
|
||||
gint32 value = GST_READ_UINT24_BE (_in);
|
||||
#else
|
||||
gint32 value = GST_READ_UINT24_LE (_in);
|
||||
#endif
|
||||
if (value & 0x00800000)
|
||||
value |= 0xff000000;
|
||||
v += value / max_value;
|
||||
_in += 3;
|
||||
}
|
||||
out[op] = v / channels;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
input_data_mixed_int16 (const guint8 * _in, gfloat * out, guint len,
|
||||
guint channels, gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
guint i, j, ip = 0;
|
||||
gint16 *in = (gint16 *) _in;
|
||||
gfloat v;
|
||||
|
||||
for (j = 0; j < len; j++) {
|
||||
v = in[ip++] * 2 + 1;
|
||||
for (i = 1; i < channels; i++)
|
||||
v += in[ip++] * 2 + 1;
|
||||
out[op] = v / channels;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
input_data_mixed_int16_max (const guint8 * _in, gfloat * out, guint len,
|
||||
guint channels, gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
guint i, j, ip = 0;
|
||||
gint16 *in = (gint16 *) _in;
|
||||
gfloat v;
|
||||
|
||||
for (j = 0; j < len; j++) {
|
||||
v = in[ip++] / max_value;
|
||||
for (i = 1; i < channels; i++)
|
||||
v += in[ip++] / max_value;
|
||||
out[op] = v / channels;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
/* non mixing data readers */
|
||||
|
||||
static gfloat
|
||||
input_data_float (const guint8 * data, gfloat max_value)
|
||||
static void
|
||||
input_data_float (const guint8 * _in, gfloat * out, guint len, guint channels,
|
||||
gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
return ((gfloat *) data)[0];
|
||||
guint j, ip;
|
||||
gfloat *in = (gfloat *) _in;
|
||||
|
||||
for (j = 0, ip = 0; j < len; j++, ip += channels) {
|
||||
out[op] = in[ip];
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_double (const guint8 * data, gfloat max_value)
|
||||
static void
|
||||
input_data_double (const guint8 * _in, gfloat * out, guint len, guint channels,
|
||||
gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
return (gfloat) ((gdouble *) data)[0];
|
||||
guint j, ip;
|
||||
gdouble *in = (gdouble *) _in;
|
||||
|
||||
for (j = 0, ip = 0; j < len; j++, ip += channels) {
|
||||
out[op] = in[ip];
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_int32 (const guint8 * data, gfloat max_value)
|
||||
static void
|
||||
input_data_int32 (const guint8 * _in, gfloat * out, guint len, guint channels,
|
||||
gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
return ((gint32 *) data)[0] * 2 + 1;
|
||||
guint j, ip;
|
||||
gint32 *in = (gint32 *) _in;
|
||||
|
||||
for (j = 0, ip = 0; j < len; j++, ip += channels) {
|
||||
out[op] = in[ip] * 2 + 1;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_int32_max (const guint8 * data, gfloat max_value)
|
||||
static void
|
||||
input_data_int32_max (const guint8 * _in, gfloat * out, guint len,
|
||||
guint channels, gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
return ((gint32 *) data)[0] / max_value;
|
||||
guint j, ip;
|
||||
gint32 *in = (gint32 *) _in;
|
||||
|
||||
for (j = 0, ip = 0; j < len; j++, ip += channels) {
|
||||
out[op] = in[ip] / max_value;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_int24 (const guint8 * data, gfloat max_value)
|
||||
static void
|
||||
input_data_int24 (const guint8 * _in, gfloat * out, guint len, guint channels,
|
||||
gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
guint j;
|
||||
|
||||
for (j = 0; j < len; j++) {
|
||||
#if G_BYTE_ORDER == G_BIG_ENDIAN
|
||||
gint32 in = GST_READ_UINT24_BE (data);
|
||||
gint32 v = GST_READ_UINT24_BE (_in);
|
||||
#else
|
||||
gint32 in = GST_READ_UINT24_LE (data);
|
||||
gint32 v = GST_READ_UINT24_LE (_in);
|
||||
#endif
|
||||
if (in & 0x00800000)
|
||||
in |= 0xff000000;
|
||||
return in * 2 + 1;
|
||||
if (v & 0x00800000)
|
||||
v |= 0xff000000;
|
||||
_in += 3 * channels;
|
||||
out[op] = v * 2 + 1;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_int24_max (const guint8 * data, gfloat max_value)
|
||||
static void
|
||||
input_data_int24_max (const guint8 * _in, gfloat * out, guint len,
|
||||
guint channels, gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
guint j;
|
||||
|
||||
for (j = 0; j < len; j++) {
|
||||
#if G_BYTE_ORDER == G_BIG_ENDIAN
|
||||
gint32 in = GST_READ_UINT24_BE (data);
|
||||
gint32 v = GST_READ_UINT24_BE (_in);
|
||||
#else
|
||||
gint32 in = GST_READ_UINT24_LE (data);
|
||||
gint32 v = GST_READ_UINT24_LE (_in);
|
||||
#endif
|
||||
if (in & 0x00800000)
|
||||
in |= 0xff000000;
|
||||
return in / max_value;
|
||||
if (v & 0x00800000)
|
||||
v |= 0xff000000;
|
||||
_in += 3 * channels;
|
||||
out[op] = v / max_value;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_int16 (const guint8 * data, gfloat max_value)
|
||||
static void
|
||||
input_data_int16 (const guint8 * _in, gfloat * out, guint len, guint channels,
|
||||
gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
return ((gint16 *) data)[0] * 2 + 1;
|
||||
guint j, ip;
|
||||
gint16 *in = (gint16 *) _in;
|
||||
|
||||
for (j = 0, ip = 0; j < len; j++, ip += channels) {
|
||||
out[op] = in[ip] * 2 + 1;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static gfloat
|
||||
input_data_int16_max (const guint8 * data, gfloat max_value)
|
||||
static void
|
||||
input_data_int16_max (const guint8 * _in, gfloat * out, guint len,
|
||||
guint channels, gfloat max_value, guint op, guint nfft)
|
||||
{
|
||||
return ((gint16 *) data)[0] / max_value;
|
||||
guint j, ip;
|
||||
gint16 *in = (gint16 *) _in;
|
||||
|
||||
for (j = 0, ip = 0; j < len; j++, ip += channels) {
|
||||
out[op] = in[ip] / max_value;
|
||||
op = (op + 1) % nfft;
|
||||
}
|
||||
}
|
||||
|
||||
static gboolean
|
||||
|
@ -677,51 +762,46 @@ gst_spectrum_setup (GstAudioFilter * base, GstRingBufferSpec * format)
|
|||
gboolean is_float = (format->type == GST_BUFTYPE_FLOAT);
|
||||
/* max_value will be 0 when depth is 1,
|
||||
* interpret -1 and 0 as -1 and +1 if that's the case. */
|
||||
gfloat max_value = (1UL << (format->depth - 1)) - 1;
|
||||
|
||||
spectrum->input_data_mixed = NULL;
|
||||
spectrum->input_data = NULL;
|
||||
guint max_value = (1UL << (format->depth - 1)) - 1;
|
||||
gboolean multi_channel = spectrum->multi_channel;
|
||||
GstSpectrumInputData input_data = NULL;
|
||||
|
||||
if (is_float) {
|
||||
if (width == 4) {
|
||||
spectrum->input_data_mixed = input_data_mixed_float;
|
||||
spectrum->input_data = input_data_float;
|
||||
input_data = multi_channel ? input_data_float : input_data_mixed_float;
|
||||
} else if (width == 8) {
|
||||
spectrum->input_data_mixed = input_data_mixed_double;
|
||||
spectrum->input_data = input_data_double;
|
||||
input_data = multi_channel ? input_data_double : input_data_mixed_double;
|
||||
} else {
|
||||
g_assert_not_reached ();
|
||||
}
|
||||
} else {
|
||||
if (width == 4) {
|
||||
if (max_value) {
|
||||
spectrum->input_data_mixed = input_data_mixed_int32_max;
|
||||
spectrum->input_data = input_data_int32_max;
|
||||
input_data =
|
||||
multi_channel ? input_data_int32_max : input_data_mixed_int32_max;
|
||||
} else {
|
||||
spectrum->input_data_mixed = input_data_mixed_int32;
|
||||
spectrum->input_data = input_data_int32;
|
||||
input_data = multi_channel ? input_data_int32 : input_data_mixed_int32;
|
||||
}
|
||||
} else if (width == 3) {
|
||||
if (max_value) {
|
||||
spectrum->input_data_mixed = input_data_mixed_int24_max;
|
||||
spectrum->input_data = input_data_int24_max;
|
||||
input_data =
|
||||
multi_channel ? input_data_int24_max : input_data_mixed_int24_max;
|
||||
} else {
|
||||
spectrum->input_data_mixed = input_data_mixed_int24;
|
||||
spectrum->input_data = input_data_int24;
|
||||
input_data = multi_channel ? input_data_int24 : input_data_mixed_int24;
|
||||
}
|
||||
} else if (width == 2) {
|
||||
if (max_value) {
|
||||
spectrum->input_data_mixed = input_data_mixed_int16_max;
|
||||
spectrum->input_data = input_data_int16_max;
|
||||
input_data =
|
||||
multi_channel ? input_data_int16_max : input_data_mixed_int16_max;
|
||||
} else {
|
||||
spectrum->input_data_mixed = input_data_mixed_int16;
|
||||
spectrum->input_data = input_data_int16;
|
||||
input_data = multi_channel ? input_data_int16 : input_data_mixed_int16;
|
||||
}
|
||||
} else {
|
||||
g_assert_not_reached ();
|
||||
}
|
||||
}
|
||||
|
||||
spectrum->input_data = input_data;
|
||||
gst_spectrum_reset_state (spectrum);
|
||||
return TRUE;
|
||||
}
|
||||
|
@ -923,6 +1003,8 @@ gst_spectrum_transform_ip (GstBaseTransform * trans, GstBuffer * buffer)
|
|||
GstRingBufferSpec *format = &GST_AUDIO_FILTER (spectrum)->format;
|
||||
guint rate = format->rate;
|
||||
guint channels = format->channels;
|
||||
guint output_channels = spectrum->multi_channel ? channels : 1;
|
||||
guint c;
|
||||
guint width = format->width / 8;
|
||||
gfloat max_value = (1UL << (format->depth - 1)) - 1;
|
||||
guint bands = spectrum->bands;
|
||||
|
@ -931,8 +1013,11 @@ gst_spectrum_transform_ip (GstBaseTransform * trans, GstBuffer * buffer)
|
|||
gfloat *input;
|
||||
const guint8 *data = GST_BUFFER_DATA (buffer);
|
||||
guint size = GST_BUFFER_SIZE (buffer);
|
||||
guint frame_size = width * channels;
|
||||
guint fft_todo, msg_todo, block_size;
|
||||
gboolean have_full_interval;
|
||||
GstSpectrumChannel *cd;
|
||||
GstSpectrumInputData input_data;
|
||||
|
||||
GST_LOG_OBJECT (spectrum, "input size: %d bytes", GST_BUFFER_SIZE (buffer));
|
||||
|
||||
|
@ -954,7 +1039,8 @@ gst_spectrum_transform_ip (GstBaseTransform * trans, GstBuffer * buffer)
|
|||
spectrum->frames_per_interval =
|
||||
gst_util_uint64_scale (spectrum->interval, rate, GST_SECOND);
|
||||
spectrum->frames_todo = spectrum->frames_per_interval;
|
||||
/* rounding error in ns, aggregated it in accumulated_error */
|
||||
/* rounding error for frames_per_interval in ns,
|
||||
* aggregated it in accumulated_error */
|
||||
spectrum->error_per_interval = (spectrum->interval * rate) % GST_SECOND;
|
||||
if (spectrum->frames_per_interval == 0)
|
||||
spectrum->frames_per_interval = 1;
|
||||
|
@ -973,135 +1059,87 @@ gst_spectrum_transform_ip (GstBaseTransform * trans, GstBuffer * buffer)
|
|||
spectrum->message_ts = GST_BUFFER_TIMESTAMP (buffer);
|
||||
|
||||
input_pos = spectrum->input_pos;
|
||||
input_data = spectrum->input_data;
|
||||
|
||||
if (!spectrum->multi_channel) {
|
||||
GstSpectrumInputDataMixed input_data_mixed = spectrum->input_data_mixed;
|
||||
while (size >= frame_size) {
|
||||
/* run input_data for a chunk of data */
|
||||
fft_todo = nfft - (spectrum->num_frames % nfft);
|
||||
msg_todo = spectrum->frames_todo - spectrum->num_frames;
|
||||
GST_LOG_OBJECT (spectrum,
|
||||
"message frames todo: %u, fft frames todo: %u, input frames %u",
|
||||
msg_todo, fft_todo, (size / frame_size));
|
||||
block_size = msg_todo;
|
||||
if (block_size > (size / frame_size))
|
||||
block_size = (size / frame_size);
|
||||
if (block_size > fft_todo)
|
||||
block_size = fft_todo;
|
||||
|
||||
cd = &spectrum->channel_data[0];
|
||||
input = cd->input;
|
||||
|
||||
while (size >= width * channels) {
|
||||
/* Move the mixdown of current frame into our ringbuffer */
|
||||
input[input_pos] = input_data_mixed (data, channels, max_value);
|
||||
|
||||
data += width * channels;
|
||||
size -= width * channels;
|
||||
input_pos = (input_pos + 1) % nfft;
|
||||
spectrum->num_frames++;
|
||||
|
||||
have_full_interval = (spectrum->num_frames == spectrum->frames_todo);
|
||||
|
||||
/* If we have enough frames for an FFT or we have all frames required for
|
||||
* the interval and we haven't run a FFT, then run an FFT */
|
||||
if ((spectrum->num_frames % nfft == 0) ||
|
||||
(have_full_interval && !spectrum->num_fft)) {
|
||||
gst_spectrum_run_fft (spectrum, cd, input_pos);
|
||||
spectrum->num_fft++;
|
||||
}
|
||||
|
||||
/* Do we have the FFTs for one interval? */
|
||||
if (have_full_interval) {
|
||||
GST_DEBUG_OBJECT (spectrum, "nfft: %u frames: %" G_GUINT64_FORMAT
|
||||
" fpi: %" G_GUINT64_FORMAT " error: %" GST_TIME_FORMAT, nfft,
|
||||
spectrum->num_frames, spectrum->frames_per_interval,
|
||||
GST_TIME_ARGS (spectrum->accumulated_error));
|
||||
|
||||
spectrum->frames_todo = spectrum->frames_per_interval;
|
||||
if (spectrum->accumulated_error >= GST_SECOND) {
|
||||
spectrum->accumulated_error -= GST_SECOND;
|
||||
spectrum->frames_todo++;
|
||||
}
|
||||
spectrum->accumulated_error += spectrum->error_per_interval;
|
||||
|
||||
if (spectrum->post_messages) {
|
||||
GstMessage *m;
|
||||
|
||||
gst_spectrum_prepare_message_data (spectrum, cd);
|
||||
|
||||
m = gst_spectrum_message_new (spectrum, spectrum->message_ts,
|
||||
spectrum->interval);
|
||||
|
||||
gst_element_post_message (GST_ELEMENT (spectrum), m);
|
||||
}
|
||||
|
||||
if (GST_CLOCK_TIME_IS_VALID (spectrum->message_ts))
|
||||
spectrum->message_ts +=
|
||||
gst_util_uint64_scale (spectrum->num_frames, GST_SECOND, rate);
|
||||
|
||||
gst_spectrum_reset_message_data (spectrum, cd);
|
||||
spectrum->num_frames = 0;
|
||||
spectrum->num_fft = 0;
|
||||
}
|
||||
for (c = 0; c < output_channels; c++) {
|
||||
cd = &spectrum->channel_data[c];
|
||||
input = cd->input;
|
||||
/* Move the current frames into our ringbuffers */
|
||||
input_data (data + c * width, input, block_size, channels, max_value,
|
||||
input_pos, nfft);
|
||||
}
|
||||
} else {
|
||||
guint c;
|
||||
GstSpectrumInputData input_data = spectrum->input_data;
|
||||
data += block_size * frame_size;
|
||||
size -= block_size * frame_size;
|
||||
input_pos = (input_pos + block_size) % nfft;
|
||||
spectrum->num_frames += block_size;
|
||||
|
||||
have_full_interval = (spectrum->num_frames == spectrum->frames_todo);
|
||||
|
||||
GST_LOG_OBJECT (spectrum, "size: %u, do-fft = %d, do-message = %d", size,
|
||||
(spectrum->num_frames % nfft == 0), have_full_interval);
|
||||
|
||||
/* If we have enough frames for an FFT or we have all frames required for
|
||||
* the interval and we haven't run a FFT, then run an FFT */
|
||||
if ((spectrum->num_frames % nfft == 0) ||
|
||||
(have_full_interval && !spectrum->num_fft)) {
|
||||
for (c = 0; c < output_channels; c++) {
|
||||
cd = &spectrum->channel_data[c];
|
||||
gst_spectrum_run_fft (spectrum, cd, input_pos);
|
||||
}
|
||||
spectrum->num_fft++;
|
||||
}
|
||||
|
||||
/* Do we have the FFTs for one interval? */
|
||||
if (have_full_interval) {
|
||||
GST_DEBUG_OBJECT (spectrum, "nfft: %u frames: %" G_GUINT64_FORMAT
|
||||
" fpi: %" G_GUINT64_FORMAT " error: %" GST_TIME_FORMAT, nfft,
|
||||
spectrum->num_frames, spectrum->frames_per_interval,
|
||||
GST_TIME_ARGS (spectrum->accumulated_error));
|
||||
|
||||
spectrum->frames_todo = spectrum->frames_per_interval;
|
||||
if (spectrum->accumulated_error >= GST_SECOND) {
|
||||
spectrum->accumulated_error -= GST_SECOND;
|
||||
spectrum->frames_todo++;
|
||||
}
|
||||
spectrum->accumulated_error += spectrum->error_per_interval;
|
||||
|
||||
if (spectrum->post_messages) {
|
||||
GstMessage *m;
|
||||
|
||||
for (c = 0; c < output_channels; c++) {
|
||||
cd = &spectrum->channel_data[c];
|
||||
gst_spectrum_prepare_message_data (spectrum, cd);
|
||||
}
|
||||
|
||||
m = gst_spectrum_message_new (spectrum, spectrum->message_ts,
|
||||
spectrum->interval);
|
||||
|
||||
gst_element_post_message (GST_ELEMENT (spectrum), m);
|
||||
}
|
||||
|
||||
if (GST_CLOCK_TIME_IS_VALID (spectrum->message_ts))
|
||||
spectrum->message_ts +=
|
||||
gst_util_uint64_scale (spectrum->num_frames, GST_SECOND, rate);
|
||||
|
||||
while (size >= width * channels) {
|
||||
for (c = 0; c < channels; c++) {
|
||||
cd = &spectrum->channel_data[c];
|
||||
input = cd->input;
|
||||
/* Move the current frames into our ringbuffers */
|
||||
input[input_pos] = input_data (data, max_value);
|
||||
data += width;
|
||||
}
|
||||
size -= width * channels;
|
||||
input_pos = (input_pos + 1) % nfft;
|
||||
spectrum->num_frames++;
|
||||
|
||||
have_full_interval = (spectrum->num_frames == spectrum->frames_todo);
|
||||
|
||||
/* If we have enough frames for an FFT or we have all frames required for
|
||||
* the interval and we haven't run a FFT, then run an FFT */
|
||||
if ((spectrum->num_frames % nfft == 0) ||
|
||||
(have_full_interval && !spectrum->num_fft)) {
|
||||
for (c = 0; c < channels; c++) {
|
||||
cd = &spectrum->channel_data[c];
|
||||
gst_spectrum_run_fft (spectrum, cd, input_pos);
|
||||
}
|
||||
spectrum->num_fft++;
|
||||
}
|
||||
|
||||
/* Do we have the FFTs for one interval? */
|
||||
if (have_full_interval) {
|
||||
|
||||
GST_DEBUG_OBJECT (spectrum, "nfft: %u frames: %" G_GUINT64_FORMAT
|
||||
" fpi: %" G_GUINT64_FORMAT " error: %" GST_TIME_FORMAT, nfft,
|
||||
spectrum->num_frames, spectrum->frames_per_interval,
|
||||
GST_TIME_ARGS (spectrum->accumulated_error));
|
||||
|
||||
spectrum->frames_todo = spectrum->frames_per_interval;
|
||||
if (spectrum->accumulated_error >= GST_SECOND) {
|
||||
spectrum->accumulated_error -= GST_SECOND;
|
||||
spectrum->frames_todo++;
|
||||
}
|
||||
spectrum->accumulated_error += spectrum->error_per_interval;
|
||||
|
||||
if (spectrum->post_messages) {
|
||||
GstMessage *m;
|
||||
|
||||
for (c = 0; c < channels; c++) {
|
||||
cd = &spectrum->channel_data[c];
|
||||
gst_spectrum_prepare_message_data (spectrum, cd);
|
||||
}
|
||||
|
||||
m = gst_spectrum_message_new (spectrum, spectrum->message_ts,
|
||||
spectrum->interval);
|
||||
|
||||
gst_element_post_message (GST_ELEMENT (spectrum), m);
|
||||
}
|
||||
|
||||
if (GST_CLOCK_TIME_IS_VALID (spectrum->message_ts))
|
||||
spectrum->message_ts +=
|
||||
gst_util_uint64_scale (spectrum->num_frames, GST_SECOND, rate);
|
||||
|
||||
for (c = 0; c < channels; c++) {
|
||||
cd = &spectrum->channel_data[c];
|
||||
gst_spectrum_reset_message_data (spectrum, cd);
|
||||
}
|
||||
spectrum->num_frames = 0;
|
||||
spectrum->num_fft = 0;
|
||||
gst_spectrum_reset_message_data (spectrum, cd);
|
||||
}
|
||||
spectrum->num_frames = 0;
|
||||
spectrum->num_fft = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -37,9 +37,8 @@ typedef struct _GstSpectrum GstSpectrum;
|
|||
typedef struct _GstSpectrumClass GstSpectrumClass;
|
||||
typedef struct _GstSpectrumChannel GstSpectrumChannel;
|
||||
|
||||
typedef gfloat (*GstSpectrumInputDataMixed)(const guint8 * data, guint channels,
|
||||
gfloat max_value);
|
||||
typedef gfloat (*GstSpectrumInputData)(const guint8 * data, gfloat max_value);
|
||||
typedef void (*GstSpectrumInputData)(const guint8 * in, gfloat * out,
|
||||
guint len, guint channels, gfloat max_value, guint op, guint nfft);
|
||||
|
||||
struct _GstSpectrumChannel
|
||||
{
|
||||
|
@ -79,7 +78,6 @@ struct _GstSpectrum
|
|||
guint64 error_per_interval;
|
||||
guint64 accumulated_error;
|
||||
|
||||
GstSpectrumInputDataMixed input_data_mixed;
|
||||
GstSpectrumInputData input_data;
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in a new issue