audioresample: added ARM NEON support

This adds ARM NEON accelerated code paths for 16-bit integer
and 32-bit floating point samples.

It is a modified combination of patches #3 and #5 from Jyri Sarha
( http://lists.xiph.org/pipermail/speex-dev/2011-September/008240.html &
http://lists.xiph.org/pipermail/speex-dev/2011-September/008238.html )

Signed-off-by: Carlos Rafael Giani <dv@pseudoterminal.org>
This commit is contained in:
Carlos Rafael Giani 2012-10-15 22:07:22 +02:00 committed by Sebastian Dröge
parent 19073ab8c4
commit d793a2b560
6 changed files with 262 additions and 4 deletions

View file

@ -196,6 +196,24 @@ AM_CONDITIONAL(HAVE_SYS_SOCKET_H, test "x$HAVE_SYS_SOCKET_H" = "xyes")
dnl used in gst-libs/gst/pbutils and associated unit test dnl used in gst-libs/gst/pbutils and associated unit test
AC_CHECK_HEADERS([process.h sys/types.h sys/wait.h sys/stat.h], [], [], [AC_INCLUDES_DEFAULT]) AC_CHECK_HEADERS([process.h sys/types.h sys/wait.h sys/stat.h], [], [], [AC_INCLUDES_DEFAULT])
dnl checks for ARM NEON support
dnl this instruction set is used by the speex resampler code
AC_MSG_CHECKING(for ARM NEON support in current arch/CFLAGS)
AC_LINK_IFELSE([
AC_LANG_PROGRAM([[
#include <arm_neon.h>
int32x4_t testfunc(int16_t *a, int16_t *b) {
return vmull_s16(vld1_s16(a), vld1_s16(b));
}
]])],
[
AC_DEFINE(HAVE_ARM_NEON,[],[ARM NEON support is enabled])
AC_MSG_RESULT(yes)
],
[
AC_MSG_RESULT(no)
])
dnl also, Windows does not have long long dnl also, Windows does not have long long
AX_CREATE_STDINT_H AX_CREATE_STDINT_H

View file

@ -39,6 +39,7 @@ noinst_HEADERS = \
gstaudioresample.h \ gstaudioresample.h \
resample.c \ resample.c \
resample_sse.h \ resample_sse.h \
resample_neon.h \
speex_resampler.h \ speex_resampler.h \
speex_resampler_wrapper.h speex_resampler_wrapper.h

View file

@ -88,6 +88,12 @@
#endif #endif
#endif #endif
#ifdef _USE_NEON
#ifndef HAVE_ARM_NEON
#undef _USE_NEON
#endif
#endif
static inline void * static inline void *
speex_alloc (int size) speex_alloc (int size)
{ {
@ -134,6 +140,10 @@ speex_free (void *ptr)
#include "resample_sse.h" #include "resample_sse.h"
#endif #endif
#ifdef _USE_NEON
#include "resample_neon.h"
#endif
/* Numer of elements to allocate on the stack */ /* Numer of elements to allocate on the stack */
#ifdef VAR_ARRAYS #ifdef VAR_ARRAYS
#define FIXED_STACK_ALLOC 8192 #define FIXED_STACK_ALLOC 8192
@ -162,6 +172,16 @@ speex_free (void *ptr)
#define SSE2_FALLBACK(macro) #define SSE2_FALLBACK(macro)
#endif #endif
#ifdef _USE_NEON
#define NEON_FALLBACK(macro) \
if (st->use_neon) goto neon_##macro##_neon; {
#define NEON_IMPLEMENTATION(macro) \
goto neon_##macro##_end; } neon_##macro##_neon: {
#define NEON_END(macro) neon_##macro##_end:; }
#else
#define NEON_FALLBACK(macro)
#endif
typedef int (*resampler_basic_func) (SpeexResamplerState *, spx_uint32_t, typedef int (*resampler_basic_func) (SpeexResamplerState *, spx_uint32_t,
const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *); const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *);
@ -201,6 +221,7 @@ struct SpeexResamplerState_
int use_sse:1; int use_sse:1;
int use_sse2:1; int use_sse2:1;
int use_neon:1;
}; };
static double kaiser12_table[68] = { static double kaiser12_table[68] = {
@ -457,6 +478,7 @@ resampler_basic_direct_single (SpeexResamplerState * st,
const spx_word16_t *iptr = &in[last_sample]; const spx_word16_t *iptr = &in[last_sample];
SSE_FALLBACK (INNER_PRODUCT_SINGLE) SSE_FALLBACK (INNER_PRODUCT_SINGLE)
NEON_FALLBACK (INNER_PRODUCT_SINGLE)
sum = 0; sum = 0;
for (j = 0; j < N; j++) for (j = 0; j < N; j++)
sum += MULT16_16 (sinc[j], iptr[j]); sum += MULT16_16 (sinc[j], iptr[j]);
@ -473,7 +495,11 @@ resampler_basic_direct_single (SpeexResamplerState * st,
} }
sum = accum[0] + accum[1] + accum[2] + accum[3]; sum = accum[0] + accum[1] + accum[2] + accum[3];
*/ */
#ifdef OVERRIDE_INNER_PRODUCT_SINGLE #if defined(OVERRIDE_INNER_PRODUCT_SINGLE) && defined(_USE_NEON)
NEON_IMPLEMENTATION (INNER_PRODUCT_SINGLE)
sum = inner_product_single (sinc, iptr, N);
NEON_END(INNER_PRODUCT_SINGLE)
#elif defined(OVERRIDE_INNER_PRODUCT_SINGLE) && defined(_USE_SSE)
SSE_IMPLEMENTATION (INNER_PRODUCT_SINGLE) SSE_IMPLEMENTATION (INNER_PRODUCT_SINGLE)
sum = inner_product_single (sinc, iptr, N); sum = inner_product_single (sinc, iptr, N);
SSE_END (INNER_PRODUCT_SINGLE) SSE_END (INNER_PRODUCT_SINGLE)
@ -528,7 +554,7 @@ resampler_basic_direct_double (SpeexResamplerState * st,
accum[3] += sinc[j + 3] * iptr[j + 3]; accum[3] += sinc[j + 3] * iptr[j + 3];
} }
sum = accum[0] + accum[1] + accum[2] + accum[3]; sum = accum[0] + accum[1] + accum[2] + accum[3];
#ifdef OVERRIDE_INNER_PRODUCT_DOUBLE #if defined(OVERRIDE_INNER_PRODUCT_DOUBLE) && defined(_USE_SSE2)
SSE2_IMPLEMENTATION (INNER_PRODUCT_DOUBLE) SSE2_IMPLEMENTATION (INNER_PRODUCT_DOUBLE)
sum = inner_product_double (sinc, iptr, N); sum = inner_product_double (sinc, iptr, N);
SSE2_END (INNER_PRODUCT_DOUBLE) SSE2_END (INNER_PRODUCT_DOUBLE)
@ -607,7 +633,7 @@ resampler_basic_interpolate_single (SpeexResamplerState * st,
1)) + MULT16_32_Q15 (interp[1], SHR32 (accum[1], 1)) + MULT16_32_Q15 (interp[1], SHR32 (accum[1],
1)) + MULT16_32_Q15 (interp[2], SHR32 (accum[2], 1)) + MULT16_32_Q15 (interp[2], SHR32 (accum[2],
1)) + MULT16_32_Q15 (interp[3], SHR32 (accum[3], 1)); 1)) + MULT16_32_Q15 (interp[3], SHR32 (accum[3], 1));
#ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE #if defined(OVERRIDE_INTERPOLATE_PRODUCT_SINGLE) && defined(_USE_SSE)
SSE_IMPLEMENTATION (INTERPOLATE_PRODUCT_SINGLE) SSE_IMPLEMENTATION (INTERPOLATE_PRODUCT_SINGLE)
cubic_coef (frac, interp); cubic_coef (frac, interp);
sum = sum =
@ -697,7 +723,7 @@ resampler_basic_interpolate_double (SpeexResamplerState * st,
MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1], MULT16_32_Q15 (interp[0], accum[0]) + MULT16_32_Q15 (interp[1],
accum[1]) + MULT16_32_Q15 (interp[2], accum[1]) + MULT16_32_Q15 (interp[2],
accum[2]) + MULT16_32_Q15 (interp[3], accum[3]); accum[2]) + MULT16_32_Q15 (interp[3], accum[3]);
#ifdef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE #if defined(OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE) && defined(_USE_SSE2)
SSE2_IMPLEMENTATION (INTERPOLATE_PRODUCT_DOUBLE) SSE2_IMPLEMENTATION (INTERPOLATE_PRODUCT_DOUBLE)
cubic_coef (frac, interp); cubic_coef (frac, interp);
sum = sum =
@ -933,10 +959,18 @@ check_insn_set (SpeexResamplerState * st, const char *name)
{ {
if (!name) if (!name)
return; return;
#ifdef _USE_SSE
if (!strcmp (name, "sse")) if (!strcmp (name, "sse"))
st->use_sse = 1; st->use_sse = 1;
#endif
#ifdef _USE_SSE2
if (!strcmp (name, "sse2")) if (!strcmp (name, "sse2"))
st->use_sse = st->use_sse2 = 1; st->use_sse = st->use_sse2 = 1;
#endif
#ifdef _USE_NEON
if (!strcmp (name, "neon"))
st->use_neon = 1;
#endif
} }
#endif #endif
@ -997,6 +1031,7 @@ speex_resampler_init_frac (spx_uint32_t nb_channels, spx_uint32_t ratio_num,
#endif #endif
st->use_sse = st->use_sse2 = 0; st->use_sse = st->use_sse2 = 0;
st->use_neon = 0;
#if defined HAVE_ORC && !defined DISABLE_ORC #if defined HAVE_ORC && !defined DISABLE_ORC
orc_init (); orc_init ();
{ {

View file

@ -0,0 +1,202 @@
/* Copyright (C) 2007-2008 Jean-Marc Valin
* Copyright (C) 2008 Thorvald Natvig
* Copyright (C) 2011 Texas Instruments
* author Jyri Sarha
*/
/**
@file resample_neon.h
@brief Resampler functions (NEON version)
*/
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <arm_neon.h>
#ifdef FIXED_POINT
#ifdef __thumb2__
static inline int32_t saturate_32bit_to_16bit(int32_t a) {
int32_t ret;
asm ("ssat %[ret], #16, %[a]"
: [ret] "=&r" (ret)
: [a] "r" (a)
: );
return ret;
}
#else
static inline int32_t saturate_32bit_to_16bit(int32_t a) {
int32_t ret;
asm ("vmov.s32 d0[0], %[a]\n"
"vqmovn.s32 d0, q0\n"
"vmov.s16 %[ret], d0[0]\n"
: [ret] "=&r" (ret)
: [a] "r" (a)
: "q0");
return ret;
}
#endif
#undef WORD2INT
#define WORD2INT(x) (saturate_32bit_to_16bit(x))
#define OVERRIDE_INNER_PRODUCT_SINGLE
/* Only works when len % 4 == 0 */
static inline int32_t inner_product_single(const int16_t *a, const int16_t *b, unsigned int len)
{
int32_t ret;
uint32_t remainder = len % 16;
len = len - remainder;
asm volatile (" cmp %[len], #0\n"
" bne 1f\n"
" vld1.16 {d16}, [%[b]]!\n"
" vld1.16 {d20}, [%[a]]!\n"
" subs %[remainder], %[remainder], #4\n"
" vmull.s16 q0, d16, d20\n"
" beq 5f\n"
" b 4f\n"
"1:"
" vld1.16 {d16, d17, d18, d19}, [%[b]]!\n"
" vld1.16 {d20, d21, d22, d23}, [%[a]]!\n"
" subs %[len], %[len], #16\n"
" vmull.s16 q0, d16, d20\n"
" vmlal.s16 q0, d17, d21\n"
" vmlal.s16 q0, d18, d22\n"
" vmlal.s16 q0, d19, d23\n"
" beq 3f\n"
"2:"
" vld1.16 {d16, d17, d18, d19}, [%[b]]!\n"
" vld1.16 {d20, d21, d22, d23}, [%[a]]!\n"
" subs %[len], %[len], #16\n"
" vmlal.s16 q0, d16, d20\n"
" vmlal.s16 q0, d17, d21\n"
" vmlal.s16 q0, d18, d22\n"
" vmlal.s16 q0, d19, d23\n"
" bne 2b\n"
"3:"
" cmp %[remainder], #0\n"
" beq 5f\n"
"4:"
" vld1.16 {d16}, [%[b]]!\n"
" vld1.16 {d20}, [%[a]]!\n"
" subs %[remainder], %[remainder], #4\n"
" vmlal.s16 q0, d16, d20\n"
" bne 4b\n"
"5:"
" vaddl.s32 q0, d0, d1\n"
" vadd.s64 d0, d0, d1\n"
" vqmovn.s64 d0, q0\n"
" vqrshrn.s32 d0, q0, #15\n"
" vmov.s16 %[ret], d0[0]\n"
: [ret] "=&r" (ret), [a] "+r" (a), [b] "+r" (b),
[len] "+r" (len), [remainder] "+r" (remainder)
:
: "cc", "q0",
"d16", "d17", "d18", "d19",
"d20", "d21", "d22", "d23");
return ret;
}
#elif defined(FLOATING_POINT)
static inline int32_t saturate_float_to_16bit(float a) {
int32_t ret;
asm ("vmov.f32 d0[0], %[a]\n"
"vcvt.s32.f32 d0, d0, #15\n"
"vqrshrn.s32 d0, q0, #15\n"
"vmov.s16 %[ret], d0[0]\n"
: [ret] "=&r" (ret)
: [a] "r" (a)
: "q0");
return ret;
}
#undef WORD2INT
#define WORD2INT(x) (saturate_float_to_16bit(x))
#define OVERRIDE_INNER_PRODUCT_SINGLE
/* Only works when len % 4 == 0 */
static inline float inner_product_single(const float *a, const float *b, unsigned int len)
{
float ret;
uint32_t remainder = len % 16;
len = len - remainder;
asm volatile (" cmp %[len], #0\n"
" bne 1f\n"
" vld1.32 {q4}, [%[b]]!\n"
" vld1.32 {q8}, [%[a]]!\n"
" subs %[remainder], %[remainder], #4\n"
" vmul.f32 q0, q4, q8\n"
" bne 4f\n"
" b 5f\n"
"1:"
" vld1.32 {q4, q5}, [%[b]]!\n"
" vld1.32 {q8, q9}, [%[a]]!\n"
" vld1.32 {q6, q7}, [%[b]]!\n"
" vld1.32 {q10, q11}, [%[a]]!\n"
" subs %[len], %[len], #16\n"
" vmul.f32 q0, q4, q8\n"
" vmul.f32 q1, q5, q9\n"
" vmul.f32 q2, q6, q10\n"
" vmul.f32 q3, q7, q11\n"
" beq 3f\n"
"2:"
" vld1.32 {q4, q5}, [%[b]]!\n"
" vld1.32 {q8, q9}, [%[a]]!\n"
" vld1.32 {q6, q7}, [%[b]]!\n"
" vld1.32 {q10, q11}, [%[a]]!\n"
" subs %[len], %[len], #16\n"
" vmla.f32 q0, q4, q8\n"
" vmla.f32 q1, q5, q9\n"
" vmla.f32 q2, q6, q10\n"
" vmla.f32 q3, q7, q11\n"
" bne 2b\n"
"3:"
" vadd.f32 q4, q0, q1\n"
" vadd.f32 q5, q2, q3\n"
" cmp %[remainder], #0\n"
" vadd.f32 q0, q4, q5\n"
" beq 5f\n"
"4:"
" vld1.32 {q6}, [%[b]]!\n"
" vld1.32 {q10}, [%[a]]!\n"
" subs %[remainder], %[remainder], #4\n"
" vmla.f32 q0, q6, q10\n"
" bne 4b\n"
"5:"
" vadd.f32 d0, d0, d1\n"
" vpadd.f32 d0, d0, d0\n"
" vmov.f32 %[ret], d0[0]\n"
: [ret] "=&r" (ret), [a] "+r" (a), [b] "+r" (b),
[len] "+l" (len), [remainder] "+l" (remainder)
:
: "cc", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8",
"q9", "q10", "q11");
return ret;
}
#endif

View file

@ -19,6 +19,7 @@
#define _USE_SSE #define _USE_SSE
#define _USE_SSE2 #define _USE_SSE2
#define _USE_NEON
#define FLOATING_POINT #define FLOATING_POINT
#define OUTSIDE_SPEEX #define OUTSIDE_SPEEX
#define RANDOM_PREFIX resample_float #define RANDOM_PREFIX resample_float

View file

@ -19,6 +19,7 @@
#define FIXED_POINT 1 #define FIXED_POINT 1
#define OUTSIDE_SPEEX 1 #define OUTSIDE_SPEEX 1
#define _USE_NEON
#define RANDOM_PREFIX resample_int #define RANDOM_PREFIX resample_int
#include "resample.c" #include "resample.c"