pwg: rewite data-access chapter

Rewrite the data-access chapter so that we talk about appsrc instead
of the fakesrc hacks.
This commit is contained in:
Wim Taymans 2012-10-02 16:15:19 +02:00
parent 5d64c5ce5a
commit cbc46176e0
2 changed files with 283 additions and 138 deletions

View file

@ -54,6 +54,8 @@ cb_have_data (GstPad *pad,
GstBuffer *buffer;
buffer = GST_PAD_PROBE_INFO_BUFFER (info);
buffer = gst_buffer_make_writable (buffer);
gst_buffer_map (buffer, &map, GST_MAP_WRITE);
@ -69,6 +71,8 @@ cb_have_data (GstPad *pad,
}
gst_buffer_unmap (buffer, &map);
GST_PAD_PROBE_INFO_DATA (info) = buffer;
return TRUE;
}
@ -145,21 +149,21 @@ main (gint argc,
looking for.
</para>
<para>
The above example is not really correct though. Strictly speaking, a
pad probe callback is only allowed to modify the buffer content if the
buffer is writable. Whether this is the case or not depends a lot on
the pipeline and the elements involved. Often enough, this is the case,
but sometimes it is not, and if it is not then unexpected modification
of the data or metadata can introduce bugs that are very hard to debug
and track down. You can check if a buffer is writable with
<function>gst_buffer_is_writable ()</function>. Since you
can pass back a different buffer than the one passed in, it is a good
idea to make the buffer writable in the callback function.
Strictly speaking, a pad probe callback is only allowed to modify the
buffer content if the buffer is writable. Whether this is the case or
not depends a lot on the pipeline and the elements involved. Often
enough, this is the case, but sometimes it is not, and if it is not
then unexpected modification of the data or metadata can introduce
bugs that are very hard to debug and track down. You can check if a
buffer is writable with <function>gst_buffer_is_writable ()</function>.
Since you can pass back a different buffer than the one passed in,
it is a good idea to make the buffer writable in the callback function
with <function>gst_buffer_make_writable ()</function>.
</para>
<para>
Pad probes are suited best for looking at data as it passes through
the pipeline. If you need to modify data, you should write your own
GStreamer element. Base classes like GstAudioFilter, GstVideoFilter or
the pipeline. If you need to modify data, you should better write your
own GStreamer element. Base classes like GstAudioFilter, GstVideoFilter or
GstBaseTransform make this fairly easy.
</para>
<para>
@ -168,7 +172,8 @@ main (gint argc,
an identity element into the pipeline and connect to its "handoff"
signal. The identity element also provides a few useful debugging tools
like the "dump" property or the "last-message" property (the latter is
enabled by passing the '-v' switch to gst-launch).
enabled by passing the '-v' switch to gst-launch and by setting the
silent property on the identity to FALSE).
</para>
</sect1>
@ -178,49 +183,272 @@ main (gint argc,
Many people have expressed the wish to use their own sources to inject
data into a pipeline. Some people have also expressed the wish to grab
the output in a pipeline and take care of the actual output inside
their application. While either of these methods are stongly
discouraged, &GStreamer; offers hacks to do this. <emphasis>However,
there is no support for those methods.</emphasis> If it doesn't work,
you're on your own. Also, synchronization, thread-safety and other
things that you've been able to take for granted so far are no longer
guaranteed if you use any of those methods. It's always better to
simply write a plugin and have the pipeline schedule and manage it.
their application. While either of these methods are strongly
discouraged, &GStreamer; offers support for this.
<emphasis>Beware! You need to know what you are doing.</emphasis> Since
you don't have any support from a base class you need to thoroughly
understand state changes and synchronization. If it doesn't work,
there are a million ways to shoot yourself in the foot. It's always
better to simply write a plugin and have the base class manage it.
See the Plugin Writer's Guide for more information on this topic. Also
see the next section, which will explain how to embed plugins statically
in your application.
</para>
<note><para>
<ulink type="http"
url="http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gst-plugins-base-libs/html/gstreamer-app.html">New
API</ulink> was developed to make data insertion and extraction easy
for applications. It can be found as GstAppSrc and GstAppSink in the
<ulink type="http"
url="http://gstreamer.freedesktop.org/modules/gst-plugins-base.html">
gst-plugins-base</ulink> module.
</para></note>
<para>
After all those disclaimers, let's start. There's three possible
elements that you can use for the above-mentioned purposes. Those are
called <quote>fakesrc</quote> (an imaginary source),
<quote>fakesink</quote> (an imaginary sink) and <quote>identity</quote>
(an imaginary filter). The same method applies to each of those
elements. Here, we will discuss how to use those elements to insert
(using fakesrc) or grab (using fakesink or identity) data from a
There's two possible elements that you can use for the above-mentioned
purposes. Those are called <quote>appsrc</quote> (an imaginary source)
and <quote>appsink</quote> (an imaginary sink). The same method applies
to each of those elements. Here, we will discuss how to use those
elements to insert (using appsrc) or grab (using appsink) data from a
pipeline, and how to set negotiation.
</para>
<para>
Those who're paying close attention will notice that the purpose
of identity is almost identical to that of probes. Indeed, this is
true. Probes allow for the same purpose, and a bunch more, and
with less overhead plus dynamic removing/adding of handlers, but
apart from those, probes and identity have the same purpose, just
in a completely different implementation type.
Both appsrc and appsink provide 2 sets of API. One API uses standard
GObject (action) signals and properties. The same API is also
available as a regular C api. The C api is more performant but
requires you to link to the app library in order to use the elements.
</para>
<sect2 id="section-spoof-handoff">
<title>Inserting or grabbing data</title>
<sect2 id="section-spoof-appsrc">
<title>Inserting data with appsrc</title>
<para>
The three before-mentioned elements (fakesrc, fakesink and identity)
First we look at some examples for appsrc, which lets you insert data
into the pipeline from the application. Appsrc has some configuration
options that define how it will operate. You should decide about the
following configurations:
</para>
<itemizedlist>
<listitem>
<para>
Will the appsrc operate in push or pull mode. The stream-type
property can be used to control this. stream-type of
<quote>random-access</quote> will activate pull mode scheduling
while the other stream-types activate push mode.
</para>
</listitem>
<listitem>
<para>
The caps of the buffers that appsrc will push out. This needs to
be configured with the caps property. The caps must be set to a
fixed caps and will be used to negotiate a format downstream.
</para>
</listitem>
<listitem>
<para>
It the appsrc operates in live mode or not. This can be configured
with the is-live property. When operating in live-mode it is
important to configure the min-latency and max-latency in appsrc.
The min-latency should be set to the amount of time it takes between
capturing a buffer and when it is pushed inside appsrc.
In live mode, you should timestamp the buffers with the pipeline
running-time when the first byte of the buffer was captured before
feeding them to appsrc. You can let appsrc do the timestaping with
the do-timestamp property (but then the min-latency must be set
to 0 because it timestamps based on the running-time when the buffer
entered appsrc).
</para>
</listitem>
<listitem>
<para>
The format of the SEGMENT event that appsrc will push. The format
has implications for how the running-time of the buffers will
be calculated so you must be sure you understand this. For
live sources you probably want to set the format property to
GST_FORMAT_TIME. For non-live source it depends on the media type
that you are handling. If you plan to timestamp the buffers, you
should probably put a GST_FORMAT_TIME format, otherwise
GST_FORMAT_BYTES might be appropriate.
</para>
</listitem>
<listitem>
<para>
If appsrc operates in random-access mode, it is important to configure
the size property of appsrc with the number of bytes in the stream.
This will allow downstream elements to know the size of the media and
alows them to seek to the end of the stream when needed.
</para>
</listitem>
</itemizedlist>
<para>
The main way of handling data to appsrc is by using the function
<function>gst_app_src_push_buffer ()</function> or by emiting the
push-buffer action signal. This will put the buffer onto a queue from
which appsrc will read from in its streaming thread. It is important
to note that data transport will not happen from the thread that
performed the push-buffer call.
</para>
<para>
The <quote>max-bytes</quote> property controls how much data can be
queued in appsrc before appsrc considers the queue full. A filled
internal queue will always signal the <quote>enough-data</quote>
signal, which signals the application that it should stop pushing
data into appsrc. The <quote>block</quote> property will cause appsrc to
block the push-buffer method until free data becomes available again.
</para>
<para>
When the internal queue is running out of data, the
<quote>need-data</quote> signal is emitted, which signals the application
that it should start pushing more data into appsrc.
</para>
<para>
In addition to the <quote>need-data</quote> and <quote>enough-data</quote>
signals, appsrc can emit the <quote>seek-data</quote> signal when the
<quote>stream-mode</quote> property is set to <quote>seekable</quote>
or <quote>random-access</quote>. The signal argument will contain the
new desired position in the stream expressed in the unit set with the
<quote>format</quote> property. After receiving the seek-data signal,
the application should push-buffers from the new position.
</para>
<para>
When the last byte is pushed into appsrc, you must call
<function>gst_app_src_end_of_stream ()</function> to make it send
an EOS downstream.
</para>
<para>
These signals allow the application to operate appsrc in push and
pull mode as will be explained next.
</para>
<sect3 id="section-spoof-appsrc-push">
<title>Using appsrc in push mode</title>
<para>
When appsrc is configured in push mode (stream-type is stream or
seekable), the application repeatedly calls the push-buffer method
with a new buffer. Optionally, the queue size in the appsrc can be
controlled with the enough-data and need-data signals by respectively
stopping/starting the push-buffer calls. The value of the
min-percent property defines how empty the internal appsrc queue
needs to be before the need-data signal will be fired. You can set
this to some value >0 to avoid completely draining the queue.
</para>
<para>
When the stream-type is set to seekable, don't forget to implement
a seek-data callback.
</para>
<para>
Use this model when implementing various network protocols or
hardware devices.
</para>
</sect3>
<sect3 id="section-spoof-appsrc-pull">
<title>Using appsrc in pull mode</title>
<para>
In the pull model, data is fed to appsrc from the need-data signal
handler. You should push exactly the amount of bytes requested in the
need-data signal. You are only allowed to push less bytes when you are
at the end of the stream.
</para>
<para>
Use this model for file access or other randomly accessable sources.
</para>
</sect3>
<sect3 id="section-spoof-appsrc-ex">
<title>Appsrc example</title>
<para>
This example application will generate black/white (it switches
every second) video to an Xv-window output by using appsrc as a
source with caps to force a format. We use a colorspace
conversion element to make sure that we feed the right format to
your X server. We configure a video stream with a variable framerate
(0/1) and we set the timestamps on the outgoing buffers in such
a way that we play 2 frames per second.
</para>
<para>
Note how we use the pull mode method of pushing new buffers into
appsrc although appsrc is running in push mode.
</para>
<programlisting><!-- example-begin appsrc.c -->
#include &lt;gst/gst.h&gt;
static GMainLoop *loop;
static void
cb_need_data (GstElement *appsrc,
guint unused_size,
gpointer user_data)
{
static gboolean white = FALSE;
static GstClockTime timestamp = 0;
GstBuffer *buffer;
guint size;
GstFlowReturn ret;
size = 385 * 288 * 2;
buffer = gst_buffer_new_allocate (NULL, size, NULL);
/* this makes the image black/white */
gst_buffer_memset (buffer, 0, white ? 0xff : 0x0, size);
white = !white;
GST_BUFFER_PTS (buffer) = timestamp;
GST_BUFFER_DURATION (buffer) = gst_util_uint64_scale_int (1, GST_SECOND, 2);
timestamp += GST_BUFFER_DURATION (buffer);
g_signal_emit_by_name (appsrc, "push-buffer", buffer, &amp;ret);
if (ret != GST_FLOW_OK) {
/* something wrong, stop pushing */
g_main_loop_quit (loop);
}
}
gint
main (gint argc,
gchar *argv[])
{
GstElement *pipeline, *appsrc, *conv, *videosink;
/* init GStreamer */
gst_init (&amp;argc, &amp;argv);
loop = g_main_loop_new (NULL, FALSE);
/* setup pipeline */
pipeline = gst_pipeline_new ("pipeline");
appsrc = gst_element_factory_make ("appsrc", "source");
conv = gst_element_factory_make ("videoconvert", "conv");
videosink = gst_element_factory_make ("xvimagesink", "videosink");
/* setup */
g_object_set (G_OBJECT (appsrc), "caps",
gst_caps_new_simple ("video/x-raw",
"format", G_TYPE_STRING, "RGB16",
"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 0, 1,
NULL), NULL);
gst_bin_add_many (GST_BIN (pipeline), appsrc, conv, videosink, NULL);
gst_element_link_many (appsrc, conv, videosink, NULL);
/* setup appsrc */
g_object_set (G_OBJECT (appsrc),
"stream-type", 0,
"format", GST_FORMAT_TIME, NULL);
g_signal_connect (appsrc, "need-data", G_CALLBACK (cb_need_data), NULL);
/* play */
gst_element_set_state (pipeline, GST_STATE_PLAYING);
g_main_loop_run (loop);
/* clean up */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));
g_main_loop_unref (loop);
return 0;
}
<!-- example-end appsrc.c --></programlisting>
</sect3>
</sect2>
<sect2 id="section-spoof-appsink">
<title>Grabbing data with appsink</title>
<para>
The two before-mentioned elements (fakesrc, fakesink and identity)
each have a <quote>handoff</quote> signal that will be called in
the <function>_get ()</function>- (fakesrc) or <function>_chain
()</function>-function (identity, fakesink). In the signal handler,
@ -243,101 +471,18 @@ main (gint argc,
<sect2 id="section-spoof-format">
<title>Forcing a format</title>
<para>
Sometimes, when using fakesrc as a source in your pipeline, you'll
want to set a specific format, for example a video size and format
or an audio bitsize and number of channels. You can do this by
forcing a specific <classname>GstCaps</classname> on the pipeline,
which is possible by using <emphasis>filtered caps</emphasis>. You
can set a filtered caps on a link by using the
<quote>capsfilter</quote> element in between the two elements, and
specifying a <classname>GstCaps</classname> as
Sometimes you'll want to set a specific format, for example a video
size and format or an audio bitsize and number of channels. You can
do this by forcing a specific <classname>GstCaps</classname> on
the pipeline, which is possible by using
<emphasis>filtered caps</emphasis>. You can set a filtered caps on
a link by using the <quote>capsfilter</quote> element in between the
two elements, and specifying a <classname>GstCaps</classname> as
<quote>caps</quote> property on this element. It will then
only allow types matching that specified capability set for
negotiation. See also <xref linkend="section-caps-filter"/>.
</para>
</sect2>
<sect2 id="section-spoof-example">
<title>Example application</title>
<para>
This example application will generate black/white (it switches
every second) video to an X-window output by using fakesrc as a
source and using filtered caps to force a format. Since the depth
of the image depends on your X-server settings, we use a colorspace
conversion element to make sure that the output to your X server
will have the correct bitdepth. You can also set timestamps on the
provided buffers to override the fixed framerate.
</para>
<programlisting><!-- example-begin fakesrc.c -->
#include &lt;string.h&gt; /* for memset () */
#include &lt;gst/gst.h&gt;
static void
cb_handoff (GstElement *fakesrc,
GstBuffer *buffer,
GstPad *pad,
gpointer user_data)
{
static gboolean white = FALSE;
GstMapInfo info;
gst_buffer_map (buffer, &amp;info, GST_MAP_WRITE);
/* this makes the image black/white */
memset (info.data, white ? 0xff : 0x0, info.size);
white = !white;
gst_buffer_unmap (buffer, &amp;info);
}
gint
main (gint argc,
gchar *argv[])
{
GstElement *pipeline, *fakesrc, *flt, *conv, *videosink;
GMainLoop *loop;
/* init GStreamer */
gst_init (&amp;argc, &amp;argv);
loop = g_main_loop_new (NULL, FALSE);
/* setup pipeline */
pipeline = gst_pipeline_new ("pipeline");
fakesrc = gst_element_factory_make ("fakesrc", "source");
flt = gst_element_factory_make ("capsfilter", "flt");
conv = gst_element_factory_make ("videoconvert", "conv");
videosink = gst_element_factory_make ("xvimagesink", "videosink");
/* setup */
g_object_set (G_OBJECT (flt), "caps",
gst_caps_new_simple ("video/x-raw",
"format", G_TYPE_STRING, "RGB16",
"width", G_TYPE_INT, 384,
"height", G_TYPE_INT, 288,
"framerate", GST_TYPE_FRACTION, 1, 1,
NULL), NULL);
gst_bin_add_many (GST_BIN (pipeline), fakesrc, flt, conv, videosink, NULL);
gst_element_link_many (fakesrc, flt, conv, videosink, NULL);
/* setup fake source */
g_object_set (G_OBJECT (fakesrc),
"signal-handoffs", TRUE,
"sizemax", 384 * 288 * 2,
"sizetype", 2, NULL);
g_signal_connect (fakesrc, "handoff", G_CALLBACK (cb_handoff), NULL);
/* play */
gst_element_set_state (pipeline, GST_STATE_PLAYING);
g_main_loop_run (loop);
/* clean up */
gst_element_set_state (pipeline, GST_STATE_NULL);
gst_object_unref (GST_OBJECT (pipeline));
return 0;
}
<!-- example-end fakesrc.c --></programlisting>
</sect2>
</sect1>
<sect1 id="section-data-manager">

View file

@ -36,7 +36,7 @@ EXAMPLES = \
query \
typefind \
probe \
fakesrc \
appsrc \
playbin \
decodebin
@ -50,7 +50,7 @@ BUILT_SOURCES = \
query.c \
typefind.c dynamic.c \
probe.c \
fakesrc.c \
appsrc.c \
playbin.c decodebin.c
CLEANFILES = core core.* test-registry.* *.gcno *.gcda $(BUILT_SOURCES)
@ -86,7 +86,7 @@ typefind.c dynamic.c: $(top_srcdir)/docs/manual/advanced-autoplugging.xml
probe.c: $(top_srcdir)/docs/manual/advanced-dataaccess.xml
$(PERL_PATH) $(srcdir)/extract.pl $@ $<
fakesrc.c: $(top_srcdir)/docs/manual/advanced-dataaccess.xml
appsrc.c: $(top_srcdir)/docs/manual/advanced-dataaccess.xml
$(PERL_PATH) $(srcdir)/extract.pl $@ $<
playbin.c decodebin.c: $(top_srcdir)/docs/manual/highlevel-components.xml