gst/deinterlace2/tvtime/: Add a C implementation for the greedyh deinterlacing method, clean up the code a bit and ma...

Original commit message from CVS:
* gst/deinterlace2/tvtime/greedyh.asm:
* gst/deinterlace2/tvtime/greedyh.c: (greedyDScaler_C),
(deinterlace_frame_di_greedyh), (dscaler_greedyh_get_method):
* gst/deinterlace2/tvtime/greedyhmacros.h:
Add a C implementation for the greedyh deinterlacing method, clean
up the code a bit and mark the SSE version as MMXEXT as it doesn't
require any SSE instructions.
This commit is contained in:
Sebastian Dröge 2008-06-28 17:25:56 +00:00
parent b1bc42dda0
commit aae071d922
4 changed files with 431 additions and 320 deletions

View file

@ -1,3 +1,13 @@
2008-06-28 Sebastian Dröge <sebastian.droege@collabora.co.uk>
* gst/deinterlace2/tvtime/greedyh.asm:
* gst/deinterlace2/tvtime/greedyh.c: (greedyDScaler_C),
(deinterlace_frame_di_greedyh), (dscaler_greedyh_get_method):
* gst/deinterlace2/tvtime/greedyhmacros.h:
Add a C implementation for the greedyh deinterlacing method, clean
up the code a bit and mark the SSE version as MMXEXT as it doesn't
require any SSE instructions.
2008-06-27 Sebastian Dröge <sebastian.droege@collabora.co.uk>
* gst/deinterlace2/gstdeinterlace2.c:

View file

@ -28,281 +28,216 @@
#include "x86-64_macros.inc"
void FUNCT_NAME( GstDeinterlace2 *object)
void
FUNCT_NAME (uint8_t * L1, uint8_t * L2, uint8_t * L3, uint8_t * L2P,
uint8_t * Dest, int size)
{
int64_t i;
int InfoIsOdd = 0;
// in tight loop some vars are accessed faster in local storage
int64_t YMask = 0x00ff00ff00ff00ffull; // to keep only luma
int64_t UVMask = 0xff00ff00ff00ff00ull; // to keep only chroma
int64_t ShiftMask = 0xfefffefffefffeffull; // to avoid shifting chroma to luma
int64_t QW256 = 0x0100010001000100ull; // 4 256's
// in tight loop some vars are accessed faster in local storage
int64_t YMask = 0x00ff00ff00ff00ffull; // to keep only luma
int64_t UVMask = 0xff00ff00ff00ff00ull; // to keep only chroma
int64_t ShiftMask = 0xfefefefefefefefeull; // to avoid shifting chroma to luma
int64_t QW256 = 0x0100010001000100ull; // 4 256's
int64_t MaxComb;
int64_t MotionThreshold;
int64_t MotionSense;
int64_t i;
long LoopCtr;
long oldbx;
// Set up our two parms that are actually evaluated for each pixel
i=GreedyMaxComb;
int64_t MaxComb = i << 56 | i << 48 | i << 40 | i << 32 | i << 24 | i << 16 | i << 8 | i;
i = GreedyMotionThreshold; // scale to range of 0-257
int64_t MotionThreshold = i << 48 | i << 32 | i << 16 | i | UVMask;
i = GreedyMotionSense; // scale to range of 0-257
int64_t MotionSense = i << 48 | i << 32 | i << 16 | i;
int64_t QW256B;
int64_t LastAvg = 0; //interp value from left qword
int Line;
long LoopCtr;
unsigned int Pitch = object->field_stride;
// Set up our two parms that are actually evaluated for each pixel
i = GreedyMaxComb;
MaxComb =
i << 56 | i << 48 | i << 40 | i << 32 | i << 24 | i << 16 | i << 8 | i;
unsigned char* L1; // ptr to Line1, of 3
unsigned char* L2; // ptr to Line2, the weave line
unsigned char* L3; // ptr to Line3
i = GreedyMotionThreshold; // scale to range of 0-257
MotionThreshold = i << 48 | i << 32 | i << 16 | i | UVMask;
unsigned char* L2P; // ptr to prev Line2
unsigned char* Dest = GST_BUFFER_DATA(object->out_buf);
i = GreedyMotionSense; // scale to range of 0-257
MotionSense = i << 48 | i << 32 | i << 16 | i;
int64_t QW256B;
int64_t LastAvg=0; //interp value from left qword
i = 0xffffffff - 256;
QW256B = i << 48 | i << 32 | i << 16 | i; // save a couple instr on PMINSW instruct.
i = 0xffffffff - 256;
QW256B = i << 48 | i << 32 | i << 16 | i; // save a couple instr on PMINSW instruct.
LoopCtr = size / 8 - 1; // there are LineLength / 8 qwords per line but do 1 less, adj at end of loop
// For ease of reading, the comments below assume that we're operating on an odd
// field (i.e., that InfoIsOdd is true). Assume the obvious for even lines..
__asm__ __volatile__ (
// save ebx (-fPIC)
MOVX " %%" XBX ", %[oldbx]\n\t"
MOVX " %[L1], %%" XAX "\n\t"
LEAX " 8(%%" XAX "), %%" XBX "\n\t" // next qword needed by DJR
MOVX " %[L3], %%" XCX "\n\t"
SUBX " %%" XAX ", %%" XCX "\n\t" // carry L3 addr as an offset
MOVX " %[L2P], %%" XDX "\n\t"
MOVX " %[L2], %%" XSI "\n\t"
MOVX " %[Dest], %%" XDI "\n\t" // DL1 if Odd or DL2 if Even
// copy first even line no matter what, and the first odd line if we're
// processing an EVEN field. (note diff from other deint rtns.)
".align 8\n\t"
"1:\n\t"
"movq (%%" XSI "), %%mm0\n\t" // L2 - the newest weave pixel value
"movq (%%" XAX "), %%mm1\n\t" // L1 - the top pixel
"movq (%%" XDX "), %%mm2\n\t" // L2P - the prev weave pixel
"movq (%%" XAX ", %%" XCX "), %%mm3\n\t" // L3, next odd row
"movq %%mm1, %%mm6\n\t" // L1 - get simple single pixel interp
if (object->field_history[object->history_count-1].flags == PICTURE_INTERLACED_BOTTOM) {
InfoIsOdd = 1;
// pavgb mm6, mm3 // use macro below
V_PAVGB ("%%mm6", "%%mm3", "%%mm4", "%[ShiftMask]")
L1 = GST_BUFFER_DATA(object->field_history[object->history_count-2].buf);
L2 = GST_BUFFER_DATA(object->field_history[object->history_count-1].buf);
L3 = L1 + Pitch;
L2P = GST_BUFFER_DATA(object->field_history[object->history_count-3].buf);
// DJR - Diagonal Jaggie Reduction
// In the event that we are going to use an average (Bob) pixel we do not want a jagged
// stair step effect. To combat this we avg in the 2 horizontally adjacen pixels into the
// interpolated Bob mix. This will do horizontal smoothing for only the Bob'd pixels.
// copy first even line
object->pMemcpy(Dest, L1, object->line_length);
Dest += object->output_stride;
}
else {
InfoIsOdd = 0;
L1 = GST_BUFFER_DATA(object->field_history[object->history_count-2].buf);
L2 = GST_BUFFER_DATA(object->field_history[object->history_count-1].buf) + Pitch;
L3 = L1 + Pitch;
L2P = GST_BUFFER_DATA(object->field_history[object->history_count-3].buf) + Pitch;
"movq %[LastAvg], %%mm4\n\t" // the bob value from prev qword in row
"movq %%mm6, %[LastAvg]\n\t" // save for next pass
"psrlq $48, %%mm4\n\t" // right justify 1 pixel
"movq %%mm6, %%mm7\n\t" // copy of simple bob pixel
"psllq $16, %%mm7\n\t" // left justify 3 pixels
"por %%mm7, %%mm4\n\t" // and combine
"movq (%%" XBX "), %%mm5\n\t" // next horiz qword from L1
// pavgb mm5, qword ptr[ebx+ecx] // next horiz qword from L3, use macro below
// copy first even line
object->pMemcpy(Dest, GST_BUFFER_DATA(object->field_history[0].buf), object->line_length);
Dest += object->output_stride;
// then first odd line
object->pMemcpy(Dest, L1, object->line_length);
Dest += object->output_stride;
}
V_PAVGB ("%%mm5", "(%%" XBX ",%%" XCX ")", "%%mm7", "%[ShiftMask]")
"psllq $48, %%mm5\n\t" // left just 1 pixel
"movq %%mm6, %%mm7\n\t" // another copy of simple bob pixel
"psrlq $16, %%mm7\n\t" // right just 3 pixels
"por %%mm7, %%mm5\n\t" // combine
// pavgb mm4, mm5 // avg of forward and prev by 1 pixel, use macro
V_PAVGB ("%%mm4", "%%mm5", "%%mm5", "%[ShiftMask]") // mm5 gets modified if MMX
// pavgb mm6, mm4 // avg of center and surround interp vals, use macro
V_PAVGB ("%%mm6", "%%mm4", "%%mm7", "%[ShiftMask]")
long oldbx;
for (Line = 0; Line < (object->field_height - 1); ++Line) {
LoopCtr = object->line_length / 8 - 1; // there are LineLength / 8 qwords per line but do 1 less, adj at end of loop
// For ease of reading, the comments below assume that we're operating on an odd
// field (i.e., that InfoIsOdd is true). Assume the obvious for even lines..
__asm__ __volatile__
(
// save ebx (-fPIC)
MOVX" %%"XBX", %[oldbx]\n\t"
MOVX" %[L1], %%"XAX"\n\t"
LEAX" 8(%%"XAX"), %%"XBX"\n\t" // next qword needed by DJR
MOVX" %[L3], %%"XCX"\n\t"
SUBX" %%"XAX", %%"XCX"\n\t" // carry L3 addr as an offset
MOVX" %[L2P], %%"XDX"\n\t"
MOVX" %[L2], %%"XSI"\n\t"
MOVX" %[Dest], %%"XDI"\n\t" // DL1 if Odd or DL2 if Even
".align 8\n\t"
"1:\n\t"
"movq (%%"XSI"), %%mm0\n\t" // L2 - the newest weave pixel value
"movq (%%"XAX"), %%mm1\n\t" // L1 - the top pixel
"movq (%%"XDX"), %%mm2\n\t" // L2P - the prev weave pixel
"movq (%%"XAX", %%"XCX"), %%mm3\n\t" // L3, next odd row
"movq %%mm1, %%mm6\n\t" // L1 - get simple single pixel interp
// pavgb mm6, mm3 // use macro below
V_PAVGB ("%%mm6", "%%mm3", "%%mm4", "%[ShiftMask]")
// DJR - Diagonal Jaggie Reduction
// In the event that we are going to use an average (Bob) pixel we do not want a jagged
// stair step effect. To combat this we avg in the 2 horizontally adjacen pixels into the
// interpolated Bob mix. This will do horizontal smoothing for only the Bob'd pixels.
"movq %[LastAvg], %%mm4\n\t" // the bob value from prev qword in row
"movq %%mm6, %[LastAvg]\n\t" // save for next pass
"psrlq $48, %%mm4\n\t" // right justify 1 pixel
"movq %%mm6, %%mm7\n\t" // copy of simple bob pixel
"psllq $16, %%mm7\n\t" // left justify 3 pixels
"por %%mm7, %%mm4\n\t" // and combine
"movq (%%"XBX"), %%mm5\n\t" // next horiz qword from L1
// pavgb mm5, qword ptr[ebx+ecx] // next horiz qword from L3, use macro below
V_PAVGB ("%%mm5", "(%%"XBX",%%"XCX")", "%%mm7", "%[ShiftMask]")
"psllq $48, %%mm5\n\t" // left just 1 pixel
"movq %%mm6, %%mm7\n\t" // another copy of simple bob pixel
"psrlq $16, %%mm7\n\t" // right just 3 pixels
"por %%mm7, %%mm5\n\t" // combine
// pavgb mm4, mm5 // avg of forward and prev by 1 pixel, use macro
V_PAVGB ("%%mm4", "%%mm5", "%%mm5", "%[ShiftMask]") // mm5 gets modified if MMX
// pavgb mm6, mm4 // avg of center and surround interp vals, use macro
V_PAVGB ("%%mm6", "%%mm4", "%%mm7", "%[ShiftMask]")
// Don't do any more averaging than needed for mmx. It hurts performance and causes rounding errors.
// Don't do any more averaging than needed for mmx. It hurts performance and causes rounding errors.
#ifndef IS_MMX
// pavgb mm4, mm6 // 1/4 center, 3/4 adjacent
V_PAVGB ("%%mm4", "%%mm6", "%%mm7", "%[ShiftMask]")
// pavgb mm6, mm4 // 3/8 center, 5/8 adjacent
V_PAVGB ("%%mm6", "%%mm4", "%%mm7", "%[ShiftMask]")
// pavgb mm4, mm6 // 1/4 center, 3/4 adjacent
V_PAVGB ("%%mm4", "%%mm6", "%%mm7", "%[ShiftMask]")
// pavgb mm6, mm4 // 3/8 center, 5/8 adjacent
V_PAVGB ("%%mm6", "%%mm4", "%%mm7", "%[ShiftMask]")
#endif
// get abs value of possible L2 comb
"movq %%mm6, %%mm4\n\t" // work copy of interp val
"movq %%mm2, %%mm7\n\t" // L2
"psubusb %%mm4, %%mm7\n\t" // L2 - avg
"movq %%mm4, %%mm5\n\t" // avg
"psubusb %%mm2, %%mm5\n\t" // avg - L2
"por %%mm7, %%mm5\n\t" // abs(avg-L2)
// get abs value of possible L2 comb
"movq %%mm6, %%mm4\n\t" // work copy of interp val
"movq %%mm2, %%mm7\n\t" // L2
"psubusb %%mm4, %%mm7\n\t" // L2 - avg
"movq %%mm4, %%mm5\n\t" // avg
"psubusb %%mm2, %%mm5\n\t" // avg - L2
"por %%mm7, %%mm5\n\t" // abs(avg-L2)
// get abs value of possible L2P comb
"movq %%mm0, %%mm7\n\t" // L2P
"psubusb %%mm4, %%mm7\n\t" // L2P - avg
"psubusb %%mm0, %%mm4\n\t" // avg - L2P
"por %%mm7, %%mm4\n\t" // abs(avg-L2P)
// get abs value of possible L2P comb
"movq %%mm0, %%mm7\n\t" // L2P
"psubusb %%mm4, %%mm7\n\t" // L2P - avg
"psubusb %%mm0, %%mm4\n\t" // avg - L2P
"por %%mm7, %%mm4\n\t" // abs(avg-L2P)
// use L2 or L2P depending upon which makes smaller comb
"psubusb %%mm5, %%mm4\n\t" // see if it goes to zero
"psubusb %%mm5, %%mm5\n\t" // 0
"pcmpeqb %%mm5, %%mm4\n\t" // if (mm4=0) then FF else 0
"pcmpeqb %%mm4, %%mm5\n\t" // opposite of mm4
// use L2 or L2P depending upon which makes smaller comb
"psubusb %%mm5, %%mm4\n\t" // see if it goes to zero
"psubusb %%mm5, %%mm5\n\t" // 0
"pcmpeqb %%mm5, %%mm4\n\t" // if (mm4=0) then FF else 0
"pcmpeqb %%mm4, %%mm5\n\t" // opposite of mm4
// if Comb(L2P) <= Comb(L2) then mm4=ff, mm5=0 else mm4=0, mm5 = 55
"pand %%mm2, %%mm5\n\t" // use L2 if mm5 == ff, else 0
"pand %%mm0, %%mm4\n\t" // use L2P if mm4 = ff, else 0
"por %%mm5, %%mm4\n\t" // may the best win
// if Comb(L2P) <= Comb(L2) then mm4=ff, mm5=0 else mm4=0, mm5 = 55
"pand %%mm2, %%mm5\n\t" // use L2 if mm5 == ff, else 0
"pand %%mm0, %%mm4\n\t" // use L2P if mm4 = ff, else 0
"por %%mm5, %%mm4\n\t" // may the best win
// Inventory: at this point we have the following values:
// mm0 = L2P (or L2)
// mm1 = L1
// mm2 = L2 (or L2P)
// mm3 = L3
// mm4 = the best of L2,L2P weave pixel, base upon comb
// mm6 = the avg interpolated value, if we need to use it
// Inventory: at this point we have the following values:
// mm0 = L2P (or L2)
// mm1 = L1
// mm2 = L2 (or L2P)
// mm3 = L3
// mm4 = the best of L2,L2P weave pixel, base upon comb
// mm6 = the avg interpolated value, if we need to use it
// Let's measure movement, as how much the weave pixel has changed
// Let's measure movement, as how much the weave pixel has changed
"movq %%mm2, %%mm7\n\t"
"psubusb %%mm0, %%mm2\n\t"
"psubusb %%mm7, %%mm0\n\t"
"por %%mm2, %%mm0\n\t" // abs value of change, used later
"movq %%mm2, %%mm7\n\t"
"psubusb %%mm0, %%mm2\n\t"
"psubusb %%mm7, %%mm0\n\t"
"por %%mm2, %%mm0\n\t" // abs value of change, used later
// Now lets clip our chosen value to be not outside of the range
// of the high/low range L1-L3 by more than MaxComb.
// This allows some comb but limits the damages and also allows more
// detail than a boring oversmoothed clip.
"movq %%mm1, %%mm2\n\t" // copy L1
// pmaxub mm2, mm3 // use macro
V_PMAXUB ("%%mm2", "%%mm3") // now = Max(L1,L3)
"movq %%mm1, %%mm5\n\t" // copy L1
// pminub mm5, mm3 // now = Min(L1,L3), use macro
V_PMINUB ("%%mm5", "%%mm3", "%%mm7")
// allow the value to be above the high or below the low by amt of MaxComb
"psubusb %[MaxComb], %%mm5\n\t" // lower min by diff
"paddusb %[MaxComb], %%mm2\n\t" // increase max by diff
// pmaxub mm4, mm5 // now = Max(best,Min(L1,L3) use macro
V_PMAXUB ("%%mm4", "%%mm5")
// pminub mm4, mm2 // now = Min( Max(best, Min(L1,L3), L2 )=L2 clipped
V_PMINUB ("%%mm4", "%%mm2", "%%mm7")
// Now lets clip our chosen value to be not outside of the range
// of the high/low range L1-L3 by more than MaxComb.
// This allows some comb but limits the damages and also allows more
// detail than a boring oversmoothed clip.
// Blend weave pixel with bob pixel, depending on motion val in mm0
"psubusb %[MotionThreshold], %%mm0\n\t"// test Threshold, clear chroma change >>>??
"pmullw %[MotionSense], %%mm0\n\t" // mul by user factor, keep low 16 bits
"movq %[QW256], %%mm7\n\t"
#ifdef HAVE_SSE
"pminsw %%mm7, %%mm0\n\t" // max = 256
"movq %%mm1, %%mm2\n\t" // copy L1
// pmaxub mm2, mm3 // use macro
V_PMAXUB ("%%mm2", "%%mm3") // now = Max(L1,L3)
"movq %%mm1, %%mm5\n\t" // copy L1
// pminub mm5, mm3 // now = Min(L1,L3), use macro
V_PMINUB ("%%mm5", "%%mm3", "%%mm7")
// allow the value to be above the high or below the low by amt of MaxComb
"psubusb %[MaxComb], %%mm5\n\t" // lower min by diff
"paddusb %[MaxComb], %%mm2\n\t" // increase max by diff
// pmaxub mm4, mm5 // now = Max(best,Min(L1,L3) use macro
V_PMAXUB ("%%mm4", "%%mm5")
// pminub mm4, mm2 // now = Min( Max(best, Min(L1,L3), L2 )=L2 clipped
V_PMINUB ("%%mm4", "%%mm2", "%%mm7")
// Blend weave pixel with bob pixel, depending on motion val in mm0
"psubusb %[MotionThreshold], %%mm0\n\t" // test Threshold, clear chroma change >>>??
"pmullw %[MotionSense], %%mm0\n\t" // mul by user factor, keep low 16 bits
"movq %[QW256], %%mm7\n\t"
#if SIMD_TYPE == MMXEXT
"pminsw %%mm7, %%mm0\n\t" // max = 256
#else
"paddusw %[QW256B], %%mm0\n\t" // add, may sat at fff..
"psubusw %[QW256B], %%mm0\n\t" // now = Min(L1,256)
"paddusw %[QW256B], %%mm0\n\t" // add, may sat at fff..
"psubusw %[QW256B], %%mm0\n\t" // now = Min(L1,256)
#endif
"psubusw %%mm0, %%mm7\n\t" // so the 2 sum to 256, weighted avg
"movq %%mm4, %%mm2\n\t" // save weave chroma info before trashing
"pand %[YMask], %%mm4\n\t" // keep only luma from calc'd value
"pmullw %%mm7, %%mm4\n\t" // use more weave for less motion
"pand %[YMask], %%mm6\n\t" // keep only luma from calc'd value
"pmullw %%mm0, %%mm6\n\t" // use more bob for large motion
"paddusw %%mm6, %%mm4\n\t" // combine
"psrlw $8, %%mm4\n\t" // div by 256 to get weighted avg
"psubusw %%mm0, %%mm7\n\t" // so the 2 sum to 256, weighted avg
"movq %%mm4, %%mm2\n\t" // save weave chroma info before trashing
"pand %[YMask], %%mm4\n\t" // keep only luma from calc'd value
"pmullw %%mm7, %%mm4\n\t" // use more weave for less motion
"pand %[YMask], %%mm6\n\t" // keep only luma from calc'd value
"pmullw %%mm0, %%mm6\n\t" // use more bob for large motion
"paddusw %%mm6, %%mm4\n\t" // combine
"psrlw $8, %%mm4\n\t" // div by 256 to get weighted avg
// chroma comes from weave pixel
"pand %[UVMask], %%mm2\n\t" // keep chroma
"por %%mm4, %%mm2\n\t" // and combine
V_MOVNTQ ("(%%" XDI ")", "%%mm2") // move in our clipped best, use macro
// bump ptrs and loop
LEAX " 8(%%" XAX "), %%" XAX "\n\t"
LEAX " 8(%%" XBX "), %%" XBX "\n\t"
LEAX " 8(%%" XDX "), %%" XDX "\n\t"
LEAX " 8(%%" XDI "), %%" XDI "\n\t"
LEAX " 8(%%" XSI "), %%" XSI "\n\t"
DECX " %[LoopCtr]\n\t"
"jg 1b\n\t" // loop if not to last line
// note P-III default assumes backward branches taken
"jl 1f\n\t" // done
MOVX " %%" XAX ", %%" XBX "\n\t" // sharpness lookahead 1 byte only, be wrong on 1
"jmp 1b\n\t"
"1:\n\t"
MOVX " %[oldbx], %%" XBX "\n\t"
"emms\n\t": /* no outputs */
// chroma comes from weave pixel
"pand %[UVMask], %%mm2\n\t" // keep chroma
"por %%mm4, %%mm2\n\t" // and combine
V_MOVNTQ ("(%%"XDI")", "%%mm2") // move in our clipped best, use macro
// bump ptrs and loop
LEAX" 8(%%"XAX"), %%"XAX"\n\t"
LEAX" 8(%%"XBX"), %%"XBX"\n\t"
LEAX" 8(%%"XDX"), %%"XDX"\n\t"
LEAX" 8(%%"XDI"), %%"XDI"\n\t"
LEAX" 8(%%"XSI"), %%"XSI"\n\t"
DECX" %[LoopCtr]\n\t"
"jg 1b\n\t" // loop if not to last line
// note P-III default assumes backward branches taken
"jl 1f\n\t" // done
MOVX" %%"XAX", %%"XBX"\n\t" // sharpness lookahead 1 byte only, be wrong on 1
"jmp 1b\n\t"
"1:\n\t"
MOVX" %[oldbx], %%"XBX"\n\t"
: /* no outputs */
: [LastAvg] "m"(LastAvg),
[L1] "m"(L1),
[L3] "m"(L3),
[L2P] "m"(L2P),
[L2] "m"(L2),
[Dest] "m"(Dest),
[ShiftMask] "m"(ShiftMask),
[MaxComb] "m"(MaxComb),
[MotionThreshold] "m"(MotionThreshold),
[MotionSense] "m"(MotionSense),
[QW256B] "m"(QW256B),
[YMask] "m"(YMask),
[UVMask] "m"(UVMask),
[LoopCtr] "m"(LoopCtr),
[QW256] "m"(QW256),
[oldbx] "m"(oldbx)
: XAX, XCX, XDX, XSI, XDI,
#ifdef HAVE_CPU_I386
"st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)",
#endif
/* FIXME: breaks unless compiling with -mmmx
"mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", */
"memory", "cc"
);
Dest += object->output_stride;
object->pMemcpy(Dest, L3, object->line_length);
Dest += object->output_stride;
L1 += Pitch;
L2 += Pitch;
L3 += Pitch;
L2P += Pitch;
}
if (InfoIsOdd) {
object->pMemcpy(Dest, L2, object->line_length);
}
// clear out the MMX registers ready for doing floating point again
#ifdef HAVE_CPU_I386
__asm__ __volatile__ ("emms\n\t");
#endif
:[LastAvg] "m" (LastAvg),
[L1] "m" (L1),
[L3] "m" (L3),
[L2P] "m" (L2P),
[L2] "m" (L2),
[Dest] "m" (Dest),
[ShiftMask] "m" (ShiftMask),
[MaxComb] "m" (MaxComb),
[MotionThreshold] "m" (MotionThreshold),
[MotionSense] "m" (MotionSense),
[QW256B] "m" (QW256B),
[YMask] "m" (YMask),
[UVMask] "m" (UVMask),
[LoopCtr] "m" (LoopCtr),
[QW256] "m" (QW256),
[oldbx] "m" (oldbx)
: XAX, XCX, XDX, XSI, XDI,
"st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)",
/* FIXME: breaks unless compiling with -mmmx
"mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", */
"memory", "cc");
}

View file

@ -41,51 +41,244 @@
#include "gstdeinterlace2.h"
#include "speedy.h"
static const unsigned int GreedyMaxComb = 5;
static const unsigned int GreedyMotionThreshold = 25;
static const unsigned int GreedyMotionSense = 30;
#define MAXCOMB_DEFAULT 5
#define MOTIONTHRESHOLD_DEFAULT 25
#define MOTIONSENSE_DEFAULT 30
void
greedyDScaler_C (uint8_t * L1, uint8_t * L2, uint8_t * L3, uint8_t * L2P,
uint8_t * Dest, int size)
{
int Pos;
uint8_t l1_l, l1_1_l, l3_l, l3_1_l;
uint8_t l1_c, l1_1_c, l3_c, l3_1_c;
uint8_t avg_l, avg_c, avg_l_1, avg_c_1;
uint8_t avg_l__1 = 0, avg_c__1 = 0;
uint8_t avg_s_l, avg_s_c;
uint8_t avg_sc_l, avg_sc_c;
uint8_t best_l, best_c;
uint16_t mov_l;
uint8_t out_l, out_c;
uint8_t l2_l, l2_c, lp2_l, lp2_c;
uint8_t l2_l_diff, l2_c_diff, lp2_l_diff, lp2_c_diff;
uint8_t min_l, min_c, max_l, max_c;
unsigned int GreedyMaxComb;
for (Pos = 0; Pos < size; Pos += 2) {
l1_l = L1[0];
l1_c = L1[1];
l3_l = L3[0];
l3_c = L3[1];
unsigned int GreedyMotionThreshold;
if (Pos == size - 1) {
l1_1_l = l1_l;
l1_1_c = l1_c;
l3_1_l = l3_l;
l3_1_c = l3_c;
} else {
l1_1_l = L1[2];
l1_1_c = L1[3];
l3_1_l = L3[2];
l3_1_c = L3[3];
}
unsigned int GreedyMotionSense;
/* Average of L1 and L3 */
avg_l = (l1_l + l3_l) / 2;
avg_c = (l1_c + l3_c) / 2;
/* Average of next L1 and next L3 */
avg_l_1 = (l1_1_l + l3_1_l) / 2;
avg_c_1 = (l1_1_c + l3_1_c) / 2;
#define IS_SSE
#define SSE_TYPE SSE
#define FUNCT_NAME greedyDScaler_SSE
/* Calculate average of one pixel forward and previous */
avg_s_l = (avg_l__1 + avg_l_1) / 2;
avg_s_c = (avg_c__1 + avg_c_1) / 2;
/* Calculate average of center and surrounding pixels */
avg_sc_l = (avg_l + avg_s_l) / 2;
avg_sc_c = (avg_c + avg_s_c) / 2;
/* move forward */
avg_l__1 = avg_l;
avg_c__1 = avg_c;
/* Get best L2/L2P, i.e. least diff from above average */
l2_l = L2[0];
l2_c = L2[1];
lp2_l = L2P[0];
lp2_c = L2P[1];
l2_l_diff = ABS (l2_l - avg_sc_l);
l2_c_diff = ABS (l2_c - avg_sc_c);
lp2_l_diff = ABS (lp2_l - avg_sc_l);
lp2_c_diff = ABS (lp2_c - avg_sc_c);
if (l2_l_diff > lp2_l_diff)
best_l = lp2_l;
else
best_l = l2_l;
if (l2_c_diff > lp2_c_diff)
best_c = lp2_c;
else
best_c = l2_c;
/* Clip this best L2/L2P by L1/L3 and allow to differ by GreedyMaxComb */
max_l = MAX (l1_l, l3_l);
min_l = MIN (l1_l, l3_l);
if (max_l < 256 - GreedyMaxComb)
max_l += GreedyMaxComb;
else
max_l = 255;
if (min_l > GreedyMaxComb)
min_l -= GreedyMaxComb;
else
min_l = 0;
max_c = MAX (l1_c, l3_c);
min_c = MIN (l1_c, l3_c);
if (max_c < 256 - GreedyMaxComb)
max_c += GreedyMaxComb;
else
max_c = 255;
if (min_c > GreedyMaxComb)
min_c -= GreedyMaxComb;
else
min_c = 0;
out_l = CLAMP (best_l, min_l, max_l);
out_c = CLAMP (best_c, min_c, max_c);
/* Do motion compensation for luma, i.e. how much
* the weave pixel differs */
mov_l = ABS (l2_l - lp2_l);
if (mov_l > GreedyMotionThreshold)
mov_l -= GreedyMotionThreshold;
else
mov_l = 0;
mov_l = mov_l * GreedyMotionSense;
if (mov_l > 256)
mov_l = 256;
/* Weighted sum on clipped weave pixel and average */
out_l = (out_l * (256 - mov_l) + avg_sc_l * mov_l) / 256;
Dest[0] = out_l;
Dest[1] = out_c;
Dest += 2;
L1 += 2;
L2 += 2;
L3 += 2;
L2P += 2;
}
}
#define IS_MMXEXT
#define SIMD_TYPE MMXEXT
#define FUNCT_NAME greedyDScaler_MMXEXT
#include "greedyh.asm"
#undef SSE_TYPE
#undef IS_SSE
#undef SIMD_TYPE
#undef IS_MMXEXT
#undef FUNCT_NAME
#define IS_3DNOW
#define IS_TDNOW
#define SIMD_TYPE TDNOW
#define FUNCT_NAME greedyDScaler_3DNOW
#define SSE_TYPE 3DNOW
#include "greedyh.asm"
#undef SSE_TYPE
#undef IS_3DNOW
#undef SIMD_TYPE
#undef IS_TDNOW
#undef FUNCT_NAME
#define IS_MMX
#define SSE_TYPE MMX
#define SIMD_TYPE MMX
#define FUNCT_NAME greedyDScaler_MMX
#include "greedyh.asm"
#undef SSE_TYPE
#undef SIMD_TYPE
#undef IS_MMX
#undef FUNCT_NAME
void
static void
deinterlace_frame_di_greedyh (GstDeinterlace2 * object)
{
if (object->cpu_feature_flags & OIL_IMPL_FLAG_SSE) {
greedyh_filter_sse (object);
void (*func) (uint8_t * L1, uint8_t * L2, uint8_t * L3, uint8_t * L2P,
uint8_t * Dest, int size);
int InfoIsOdd = 0;
int Line;
unsigned int Pitch = object->field_stride;
unsigned char *L1; // ptr to Line1, of 3
unsigned char *L2; // ptr to Line2, the weave line
unsigned char *L3; // ptr to Line3
unsigned char *L2P; // ptr to prev Line2
unsigned char *Dest = GST_BUFFER_DATA (object->out_buf);
if (object->cpu_feature_flags & OIL_IMPL_FLAG_MMXEXT) {
func = greedyDScaler_MMXEXT;
} else if (object->cpu_feature_flags & OIL_IMPL_FLAG_3DNOW) {
greedyh_filter_3dnow (object);
func = greedyDScaler_3DNOW;
} else if (object->cpu_feature_flags & OIL_IMPL_FLAG_MMX) {
func = greedyDScaler_MMX;
} else {
greedyh_filter_mmx (object);
func = greedyDScaler_C;
}
// copy first even line no matter what, and the first odd line if we're
// processing an EVEN field. (note diff from other deint rtns.)
if (object->field_history[object->history_count - 1].flags ==
PICTURE_INTERLACED_BOTTOM) {
InfoIsOdd = 1;
L1 = GST_BUFFER_DATA (object->field_history[object->history_count - 2].buf);
L2 = GST_BUFFER_DATA (object->field_history[object->history_count - 1].buf);
L3 = L1 + Pitch;
L2P =
GST_BUFFER_DATA (object->field_history[object->history_count - 3].buf);
// copy first even line
object->pMemcpy (Dest, L1, object->line_length);
Dest += object->output_stride;
} else {
InfoIsOdd = 0;
L1 = GST_BUFFER_DATA (object->field_history[object->history_count - 2].buf);
L2 = GST_BUFFER_DATA (object->field_history[object->history_count -
1].buf) + Pitch;
L3 = L1 + Pitch;
L2P =
GST_BUFFER_DATA (object->field_history[object->history_count - 3].buf) +
Pitch;
// copy first even line
object->pMemcpy (Dest, GST_BUFFER_DATA (object->field_history[0].buf),
object->line_length);
Dest += object->output_stride;
// then first odd line
object->pMemcpy (Dest, L1, object->line_length);
Dest += object->output_stride;
}
for (Line = 0; Line < (object->field_height - 1); ++Line) {
func (L1, L2, L3, L2P, Dest, object->line_length);
Dest += object->output_stride;
object->pMemcpy (Dest, L3, object->line_length);
Dest += object->output_stride;
L1 += Pitch;
L2 += Pitch;
L3 += Pitch;
L2P += Pitch;
}
if (InfoIsOdd) {
object->pMemcpy (Dest, L2, object->line_length);
}
}
@ -94,7 +287,7 @@ static deinterlace_method_t greedyh_method = {
"Motion Adaptive: Advanced Detection",
"AdaptiveAdvanced",
4,
OIL_IMPL_FLAG_MMX,
0,
0,
0,
0,
@ -117,32 +310,5 @@ static deinterlace_method_t greedyh_method = {
deinterlace_method_t *
dscaler_greedyh_get_method (void)
{
greedyh_init ();
return &greedyh_method;
}
void
greedyh_init (void)
{
GreedyMaxComb = MAXCOMB_DEFAULT;
GreedyMotionThreshold = MOTIONTHRESHOLD_DEFAULT;
GreedyMotionSense = MOTIONSENSE_DEFAULT;
}
void
greedyh_filter_mmx (GstDeinterlace2 * object)
{
greedyDScaler_MMX (object);
}
void
greedyh_filter_3dnow (GstDeinterlace2 * object)
{
greedyDScaler_3DNOW (object);
}
void
greedyh_filter_sse (GstDeinterlace2 * object)
{
greedyDScaler_SSE (object);
}

View file

@ -21,7 +21,7 @@
// BEFORE USING THESE YOU MUST SET:
// #define SSE_TYPE SSE (or MMX or 3DNOW)
// #define SIMD_TYPE MMXEXT (or MMX or TDNOW)
// some macros for pavgb instruction
// V_PAVGB(mmr1, mmr2, mmr work register, smask) mmr2 may = mmrw if you can trash it
@ -33,21 +33,21 @@
"pand "smask", "mmr1"\n\t" \
"psrlw $1, "mmr1"\n\t" \
"paddusb "mmrw", "mmr1"\n\t"
#define V_PAVGB_SSE(mmr1, mmr2, mmrw, smask) "pavgb "mmr2", "mmr1"\n\t"
#define V_PAVGB_3DNOW(mmr1, mmr2, mmrw, smask) "pavgusb "mmr2", "mmr1"\n\t"
#define V_PAVGB(mmr1, mmr2, mmrw, smask) V_PAVGB2(mmr1, mmr2, mmrw, smask, SSE_TYPE)
#define V_PAVGB2(mmr1, mmr2, mmrw, smask, ssetyp) V_PAVGB3(mmr1, mmr2, mmrw, smask, ssetyp)
#define V_PAVGB3(mmr1, mmr2, mmrw, smask, ssetyp) V_PAVGB_##ssetyp(mmr1, mmr2, mmrw, smask)
#define V_PAVGB_MMXEXT(mmr1, mmr2, mmrw, smask) "pavgb "mmr2", "mmr1"\n\t"
#define V_PAVGB_TDNOW(mmr1, mmr2, mmrw, smask) "pavgusb "mmr2", "mmr1"\n\t"
#define V_PAVGB(mmr1, mmr2, mmrw, smask) V_PAVGB2(mmr1, mmr2, mmrw, smask, SIMD_TYPE)
#define V_PAVGB2(mmr1, mmr2, mmrw, smask, simdtype) V_PAVGB3(mmr1, mmr2, mmrw, smask, simdtype)
#define V_PAVGB3(mmr1, mmr2, mmrw, smask, simdtype) V_PAVGB_##simdtype(mmr1, mmr2, mmrw, smask)
// some macros for pmaxub instruction
#define V_PMAXUB_MMX(mmr1, mmr2) \
"psubusb "mmr2", "mmr1"\n\t" \
"paddusb "mmr2", "mmr1"\n\t"
#define V_PMAXUB_SSE(mmr1, mmr2) "pmaxub "mmr2", "mmr1"\n\t"
#define V_PMAXUB_3DNOW(mmr1, mmr2) V_PMAXUB_MMX(mmr1, mmr2) // use MMX version
#define V_PMAXUB(mmr1, mmr2) V_PMAXUB2(mmr1, mmr2, SSE_TYPE)
#define V_PMAXUB2(mmr1, mmr2, ssetyp) V_PMAXUB3(mmr1, mmr2, ssetyp)
#define V_PMAXUB3(mmr1, mmr2, ssetyp) V_PMAXUB_##ssetyp(mmr1, mmr2)
#define V_PMAXUB_MMXEXT(mmr1, mmr2) "pmaxub "mmr2", "mmr1"\n\t"
#define V_PMAXUB_TDNOW(mmr1, mmr2) V_PMAXUB_MMX(mmr1, mmr2) // use MMX version
#define V_PMAXUB(mmr1, mmr2) V_PMAXUB2(mmr1, mmr2, SIMD_TYPE)
#define V_PMAXUB2(mmr1, mmr2, simdtype) V_PMAXUB3(mmr1, mmr2, simdtype)
#define V_PMAXUB3(mmr1, mmr2, simdtype) V_PMAXUB_##simdtype(mmr1, mmr2)
// some macros for pminub instruction
// V_PMINUB(mmr1, mmr2, mmr work register) mmr2 may NOT = mmrw
@ -56,19 +56,19 @@
"psubusb "mmr2", "mmrw"\n\t" \
"paddusb "mmrw", "mmr1"\n\t" \
"psubusb "mmrw", "mmr1"\n\t"
#define V_PMINUB_SSE(mmr1, mmr2, mmrw) "pminub "mmr2", "mmr1"\n\t"
#define V_PMINUB_3DNOW(mmr1, mmr2, mmrw) V_PMINUB_MMX(mmr1, mmr2, mmrw) // use MMX version
#define V_PMINUB(mmr1, mmr2, mmrw) V_PMINUB2(mmr1, mmr2, mmrw, SSE_TYPE)
#define V_PMINUB2(mmr1, mmr2, mmrw, ssetyp) V_PMINUB3(mmr1, mmr2, mmrw, ssetyp)
#define V_PMINUB3(mmr1, mmr2, mmrw, ssetyp) V_PMINUB_##ssetyp(mmr1, mmr2, mmrw)
#define V_PMINUB_MMXEXT(mmr1, mmr2, mmrw) "pminub "mmr2", "mmr1"\n\t"
#define V_PMINUB_TDNOW(mmr1, mmr2, mmrw) V_PMINUB_MMX(mmr1, mmr2, mmrw) // use MMX version
#define V_PMINUB(mmr1, mmr2, mmrw) V_PMINUB2(mmr1, mmr2, mmrw, SIMD_TYPE)
#define V_PMINUB2(mmr1, mmr2, mmrw, simdtype) V_PMINUB3(mmr1, mmr2, mmrw, simdtype)
#define V_PMINUB3(mmr1, mmr2, mmrw, simdtype) V_PMINUB_##simdtype(mmr1, mmr2, mmrw)
// some macros for movntq instruction
// V_MOVNTQ(mmr1, mmr2)
#define V_MOVNTQ_MMX(mmr1, mmr2) "movq "mmr2", "mmr1"\n\t"
#define V_MOVNTQ_3DNOW(mmr1, mmr2) "movq "mmr2", "mmr1"\n\t"
#define V_MOVNTQ_SSE(mmr1, mmr2) "movntq "mmr2", "mmr1"\n\t"
#define V_MOVNTQ(mmr1, mmr2) V_MOVNTQ2(mmr1, mmr2, SSE_TYPE)
#define V_MOVNTQ2(mmr1, mmr2, ssetyp) V_MOVNTQ3(mmr1, mmr2, ssetyp)
#define V_MOVNTQ3(mmr1, mmr2, ssetyp) V_MOVNTQ_##ssetyp(mmr1, mmr2)
#define V_MOVNTQ_TDNOW(mmr1, mmr2) "movq "mmr2", "mmr1"\n\t"
#define V_MOVNTQ_MMXEXT(mmr1, mmr2) "movntq "mmr2", "mmr1"\n\t"
#define V_MOVNTQ(mmr1, mmr2) V_MOVNTQ2(mmr1, mmr2, SIMD_TYPE)
#define V_MOVNTQ2(mmr1, mmr2, simdtype) V_MOVNTQ3(mmr1, mmr2, simdtype)
#define V_MOVNTQ3(mmr1, mmr2, simdtype) V_MOVNTQ_##simdtype(mmr1, mmr2)
// end of macros