configure.ac: remove all mmx stuff, because it's not used.

Original commit message from CVS:
* configure.ac: remove all mmx stuff, because it's not used.
* docs/random/ds/0.9-suggested-changes: additional notes
* include/Makefile.am: we don't use these anymore
* include/mmx.h: remove
* include/sse.h: remove
This commit is contained in:
David Schleef 2004-12-14 06:20:10 +00:00
parent 7974616341
commit 88d3af9c69
6 changed files with 11 additions and 1734 deletions

View file

@ -1,3 +1,11 @@
2004-12-13 David Schleef <ds@schleef.org>
* configure.ac: remove all mmx stuff, because it's not used.
* docs/random/ds/0.9-suggested-changes: additional notes
* include/Makefile.am: we don't use these anymore
* include/mmx.h: remove
* include/sse.h: remove
2004-12-13 Stephane Loeuillet <stephane.loeuillet@tiscali.fr> 2004-12-13 Stephane Loeuillet <stephane.loeuillet@tiscali.fr>
* docs/random/mimetypes: * docs/random/mimetypes:

View file

@ -319,15 +319,6 @@ dnl ######################################################################
dnl FIXME: simplify all this down using a few m4 macros dnl FIXME: simplify all this down using a few m4 macros
AC_ARG_ENABLE(libmmx,
AC_HELP_STRING([--enable-libmmx],[use libmmx, if available]),
[case "${enableval}" in
yes) USE_LIBMMX=$HAVE_LIBMMX ;;
no) USE_LIBMMX=no ;;
*) AC_MSG_ERROR(bad value ${enableval} for --enable-libmmx) ;;
esac],
[USE_LIBMMX=$HAVE_LIBMMX]) dnl Default value
AC_ARG_ENABLE(fast-stack-trash, AC_ARG_ENABLE(fast-stack-trash,
AC_HELP_STRING([--enable-fast-stack-trash],[use fast memory allocator (i586 or above)]), AC_HELP_STRING([--enable-fast-stack-trash],[use fast memory allocator (i586 or above)]),
[case "${enableval}" in [case "${enableval}" in
@ -458,10 +449,6 @@ dnl ################################################
dnl These should be "USE_*" instead of "HAVE_*", but some packages expect dnl These should be "USE_*" instead of "HAVE_*", but some packages expect
dnl HAVE_ and it is likely to be easier to stick with the old name dnl HAVE_ and it is likely to be easier to stick with the old name
if test "x$USE_LIBMMX" = xyes; then
AC_DEFINE(HAVE_LIBMMX, 1, [Define if libmmx is available])
fi
if test "x$USE_FAST_STACK_TRASH" = xyes; then if test "x$USE_FAST_STACK_TRASH" = xyes; then
AC_DEFINE(USE_FAST_STACK_TRASH, 1, [Define if we should use i586 optimized stack functions]) AC_DEFINE(USE_FAST_STACK_TRASH, 1, [Define if we should use i586 optimized stack functions])
fi fi

View file

@ -91,6 +91,9 @@ API:
- remove GstMemChunk - remove GstMemChunk
- remove GST_FORMATS_FUNCTION(). It doesn't work with non-c99
compilers.
caps: caps:
(Company:) (Company:)

View file

@ -1,6 +1,3 @@
noinst_HEADERS = \
mmx.h \
sse.h
# This test needs to go here because this is the first makefile which the # This test needs to go here because this is the first makefile which the
# install target gets run in. # install target gets run in.

View file

@ -1,725 +0,0 @@
/* mmx.h
MultiMedia eXtensions GCC interface library for IA32.
To use this library, simply include this header file
and compile with GCC. You MUST have inlining enabled
in order for mmx_ok() to work; this can be done by
simply using -O on the GCC command line.
Compiling with -DMMX_TRACE will cause detailed trace
output to be sent to stderr for each mmx operation.
This adds lots of code, and obviously slows execution to
a crawl, but can be very useful for debugging.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR ANY PARTICULAR PURPOSE.
1997-98 by H. Dietz and R. Fisher
History:
97-98* R.Fisher Early versions
980501 R.Fisher Original Release
980611* H.Dietz Rewrite, correctly implementing inlines, and
R.Fisher including direct register accesses.
980616 R.Fisher Release of 980611 as 980616.
980714 R.Fisher Minor corrections to Makefile, etc.
980715 R.Fisher mmx_ok() now prevents optimizer from using
clobbered values.
mmx_ok() now checks if cpuid instruction is
available before trying to use it.
980726* R.Fisher mm_support() searches for AMD 3DNow, Cyrix
Extended MMX, and standard MMX. It returns a
value which is positive if any of these are
supported, and can be masked with constants to
see which. mmx_ok() is now a call to this
980726* R.Fisher Added i2r support for shift functions
980919 R.Fisher Fixed AMD extended feature recognition bug.
980921 R.Fisher Added definition/check for _MMX_H.
Added "float s[2]" to mmx_t for use with
3DNow and EMMX. So same mmx_t can be used.
981013 R.Fisher Fixed cpuid function 1 bug (looked at wrong reg)
Fixed psllq_i2r error in mmxtest.c
* Unreleased (internal or interim) versions
Notes:
It appears that the latest gas has the pand problem fixed, therefore
I'll undefine BROKEN_PAND by default.
String compares may be quicker than the multiple test/jumps in vendor
test sequence in mmx_ok(), but I'm not concerned with that right now.
Acknowledgments:
Jussi Laako for pointing out the errors ultimately found to be
connected to the failure to notify the optimizer of clobbered values.
Roger Hardiman for reminding us that CPUID isn't everywhere, and that
someone may actually try to use this on a machine without CPUID.
Also for suggesting code for checking this.
Robert Dale for pointing out the AMD recognition bug.
Jimmy Mayfield and Carl Witty for pointing out the Intel recognition
bug.
Carl Witty for pointing out the psllq_i2r test bug.
*/
#ifndef _MMX_H
#define _MMX_H
/*#define MMX_TRACE */
/* Warning: at this writing, the version of GAS packaged
with most Linux distributions does not handle the
parallel AND operation mnemonic correctly. If the
symbol BROKEN_PAND is defined, a slower alternative
coding will be used. If execution of mmxtest results
in an illegal instruction fault, define this symbol.
*/
#undef BROKEN_PAND
/* The type of an value that fits in an MMX register
(note that long long constant values MUST be suffixed
by LL and unsigned long long values by ULL, lest
they be truncated by the compiler)
*/
typedef union {
long long q; /* Quadword (64-bit) value */
unsigned long long uq; /* Unsigned Quadword */
int d[2]; /* 2 Doubleword (32-bit) values */
unsigned int ud[2]; /* 2 Unsigned Doubleword */
short w[4]; /* 4 Word (16-bit) values */
unsigned short uw[4]; /* 4 Unsigned Word */
char b[8]; /* 8 Byte (8-bit) values */
unsigned char ub[8]; /* 8 Unsigned Byte */
float s[2]; /* Single-precision (32-bit) value */
} mmx_t;
/* Function to test if multimedia instructions are supported...
*/
inline extern int
mm_support(void)
{
/* Returns 1 if MMX instructions are supported,
3 if Cyrix MMX and Extended MMX instructions are supported
5 if AMD MMX and 3DNow! instructions are supported
0 if hardware does not support any of these
*/
register int rval = 0;
__asm__ __volatile__ (
/* See if CPUID instruction is supported ... */
/* ... Get copies of EFLAGS into eax and ecx */
"pushf\n\t"
"popl %%eax\n\t"
"movl %%eax, %%ecx\n\t"
/* ... Toggle the ID bit in one copy and store */
/* to the EFLAGS reg */
"xorl $0x200000, %%eax\n\t"
"push %%eax\n\t"
"popf\n\t"
/* ... Get the (hopefully modified) EFLAGS */
"pushf\n\t"
"popl %%eax\n\t"
/* ... Compare and test result */
"xorl %%eax, %%ecx\n\t"
"testl $0x200000, %%ecx\n\t"
"jz NotSupported1\n\t" /* Nothing supported */
/* Get standard CPUID information, and
go to a specific vendor section */
"movl $0, %%eax\n\t"
"cpuid\n\t"
/* Check for Intel */
"cmpl $0x756e6547, %%ebx\n\t"
"jne TryAMD\n\t"
"cmpl $0x49656e69, %%edx\n\t"
"jne TryAMD\n\t"
"cmpl $0x6c65746e, %%ecx\n"
"jne TryAMD\n\t"
"jmp Intel\n\t"
/* Check for AMD */
"\nTryAMD:\n\t"
"cmpl $0x68747541, %%ebx\n\t"
"jne TryCyrix\n\t"
"cmpl $0x69746e65, %%edx\n\t"
"jne TryCyrix\n\t"
"cmpl $0x444d4163, %%ecx\n"
"jne TryCyrix\n\t"
"jmp AMD\n\t"
/* Check for Cyrix */
"\nTryCyrix:\n\t"
"cmpl $0x69727943, %%ebx\n\t"
"jne NotSupported2\n\t"
"cmpl $0x736e4978, %%edx\n\t"
"jne NotSupported3\n\t"
"cmpl $0x64616574, %%ecx\n\t"
"jne NotSupported4\n\t"
/* Drop through to Cyrix... */
/* Cyrix Section */
/* See if extended CPUID is supported */
"movl $0x80000000, %%eax\n\t"
"cpuid\n\t"
"cmpl $0x80000000, %%eax\n\t"
"jl MMXtest\n\t" /* Try standard CPUID instead */
/* Extended CPUID supported, so get extended features */
"movl $0x80000001, %%eax\n\t"
"cpuid\n\t"
"testl $0x00800000, %%eax\n\t" /* Test for MMX */
"jz NotSupported5\n\t" /* MMX not supported */
"testl $0x01000000, %%eax\n\t" /* Test for Ext'd MMX */
"jnz EMMXSupported\n\t"
"movl $1, %0:\n\n\t" /* MMX Supported */
"jmp Return\n\n"
"EMMXSupported:\n\t"
"movl $3, %0:\n\n\t" /* EMMX and MMX Supported */
"jmp Return\n\t"
/* AMD Section */
"AMD:\n\t"
/* See if extended CPUID is supported */
"movl $0x80000000, %%eax\n\t"
"cpuid\n\t"
"cmpl $0x80000000, %%eax\n\t"
"jl MMXtest\n\t" /* Try standard CPUID instead */
/* Extended CPUID supported, so get extended features */
"movl $0x80000001, %%eax\n\t"
"cpuid\n\t"
"testl $0x00800000, %%edx\n\t" /* Test for MMX */
"jz NotSupported6\n\t" /* MMX not supported */
"testl $0x80000000, %%edx\n\t" /* Test for 3DNow! */
"jnz ThreeDNowSupported\n\t"
"movl $1, %0:\n\n\t" /* MMX Supported */
"jmp Return\n\n"
"ThreeDNowSupported:\n\t"
"movl $5, %0:\n\n\t" /* 3DNow! and MMX Supported */
"jmp Return\n\t"
/* Intel Section */
"Intel:\n\t"
/* Check for MMX */
"MMXtest:\n\t"
"movl $1, %%eax\n\t"
"cpuid\n\t"
"testl $0x00800000, %%edx\n\t" /* Test for MMX */
"jz NotSupported7\n\t" /* MMX Not supported */
"movl $1, %0:\n\n\t" /* MMX Supported */
"jmp Return\n\t"
/* Nothing supported */
"\nNotSupported1:\n\t"
"#movl $101, %0:\n\n\t"
"\nNotSupported2:\n\t"
"#movl $102, %0:\n\n\t"
"\nNotSupported3:\n\t"
"#movl $103, %0:\n\n\t"
"\nNotSupported4:\n\t"
"#movl $104, %0:\n\n\t"
"\nNotSupported5:\n\t"
"#movl $105, %0:\n\n\t"
"\nNotSupported6:\n\t"
"#movl $106, %0:\n\n\t"
"\nNotSupported7:\n\t"
"#movl $107, %0:\n\n\t"
"movl $0, %0:\n\n\t"
"Return:\n\t"
: "=a" (rval)
: /* no input */
: "eax", "ebx", "ecx", "edx"
);
/* Return */
return(rval);
}
/* Function to test if mmx instructions are supported...
*/
inline extern int
mmx_ok(void)
{
/* Returns 1 if MMX instructions are supported, 0 otherwise */
return ( mm_support() & 0x1 );
}
/* Helper functions for the instruction macros that follow...
(note that memory-to-register, m2r, instructions are nearly
as efficient as register-to-register, r2r, instructions;
however, memory-to-memory instructions are really simulated
as a convenience, and are only 1/3 as efficient)
*/
#ifdef MMX_TRACE
/* Include the stuff for printing a trace to stderr...
*/
#include <stdio.h>
#define mmx_i2r(op, imm, reg) \
{ \
mmx_t mmx_trace; \
mmx_trace = (imm); \
fprintf(stderr, #op "_i2r(" #imm "=0x%016llx, ", mmx_trace.q); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
fprintf(stderr, #reg "=0x%016llx) => ", mmx_trace.q); \
__asm__ __volatile__ (#op " %0, %%" #reg \
: /* nothing */ \
: "X" (imm)); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
fprintf(stderr, #reg "=0x%016llx\n", mmx_trace.q); \
}
#define mmx_m2r(op, mem, reg) \
{ \
mmx_t mmx_trace; \
mmx_trace = (mem); \
fprintf(stderr, #op "_m2r(" #mem "=0x%016llx, ", mmx_trace.q); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
fprintf(stderr, #reg "=0x%016llx) => ", mmx_trace.q); \
__asm__ __volatile__ (#op " %0, %%" #reg \
: /* nothing */ \
: "X" (mem)); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
fprintf(stderr, #reg "=0x%016llx\n", mmx_trace.q); \
}
#define mmx_r2m(op, reg, mem) \
{ \
mmx_t mmx_trace; \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
fprintf(stderr, #op "_r2m(" #reg "=0x%016llx, ", mmx_trace.q); \
mmx_trace = (mem); \
fprintf(stderr, #mem "=0x%016llx) => ", mmx_trace.q); \
__asm__ __volatile__ (#op " %%" #reg ", %0" \
: "=X" (mem) \
: /* nothing */ ); \
mmx_trace = (mem); \
fprintf(stderr, #mem "=0x%016llx\n", mmx_trace.q); \
}
#define mmx_r2r(op, regs, regd) \
{ \
mmx_t mmx_trace; \
__asm__ __volatile__ ("movq %%" #regs ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
fprintf(stderr, #op "_r2r(" #regs "=0x%016llx, ", mmx_trace.q); \
__asm__ __volatile__ ("movq %%" #regd ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
fprintf(stderr, #regd "=0x%016llx) => ", mmx_trace.q); \
__asm__ __volatile__ (#op " %" #regs ", %" #regd); \
__asm__ __volatile__ ("movq %%" #regd ", %0" \
: "=X" (mmx_trace) \
: /* nothing */ ); \
fprintf(stderr, #regd "=0x%016llx\n", mmx_trace.q); \
}
#define mmx_m2m(op, mems, memd) \
{ \
mmx_t mmx_trace; \
mmx_trace = (mems); \
fprintf(stderr, #op "_m2m(" #mems "=0x%016llx, ", mmx_trace.q); \
mmx_trace = (memd); \
fprintf(stderr, #memd "=0x%016llx) => ", mmx_trace.q); \
__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
#op " %1, %%mm0\n\t" \
"movq %%mm0, %0" \
: "=X" (memd) \
: "X" (mems)); \
mmx_trace = (memd); \
fprintf(stderr, #memd "=0x%016llx\n", mmx_trace.q); \
}
#else
/* These macros are a lot simpler without the tracing...
*/
#define mmx_i2r(op, imm, reg) \
__asm__ __volatile__ (#op " $" #imm ", %%" #reg \
: /* nothing */ \
: /* nothing */);
#define mmx_m2r(op, mem, reg) \
__asm__ __volatile__ (#op " %0, %%" #reg \
: /* nothing */ \
: "m" (mem))
#define mmx_r2m(op, reg, mem) \
__asm__ __volatile__ (#op " %%" #reg ", %0" \
: "=m" (mem) \
: /* nothing */ )
#define mmx_r2r(op, regs, regd) \
__asm__ __volatile__ (#op " %" #regs ", %" #regd)
#define mmx_m2m(op, mems, memd) \
__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
#op " %1, %%mm0\n\t" \
"movq %%mm0, %0" \
: "=m" (memd) \
: "m" (mems))
#endif
/* 1x64 MOVe Quadword
(this is both a load and a store...
in fact, it is the only way to store)
*/
#define movq_m2r(var, reg) mmx_m2r(movq, var, reg)
#define movq_r2m(reg, var) mmx_r2m(movq, reg, var)
#define movq_r2r(regs, regd) mmx_r2r(movq, regs, regd)
#define movq(vars, vard) \
__asm__ __volatile__ ("movq %1, %%mm0\n\t" \
"movq %%mm0, %0" \
: "=X" (vard) \
: "X" (vars))
/* 1x32 MOVe Doubleword
(like movq, this is both load and store...
but is most useful for moving things between
mmx registers and ordinary registers)
*/
#define movd_m2r(var, reg) mmx_m2r(movd, var, reg)
#define movd_r2m(reg, var) mmx_r2m(movd, reg, var)
#define movd_r2r(regs, regd) mmx_r2r(movd, regs, regd)
#define movd(vars, vard) \
__asm__ __volatile__ ("movd %1, %%mm0\n\t" \
"movd %%mm0, %0" \
: "=X" (vard) \
: "X" (vars))
/* 2x32, 4x16, and 8x8 Parallel ADDs
*/
#define paddd_m2r(var, reg) mmx_m2r(paddd, var, reg)
#define paddd_r2r(regs, regd) mmx_r2r(paddd, regs, regd)
#define paddd(vars, vard) mmx_m2m(paddd, vars, vard)
#define paddw_m2r(var, reg) mmx_m2r(paddw, var, reg)
#define paddw_r2r(regs, regd) mmx_r2r(paddw, regs, regd)
#define paddw(vars, vard) mmx_m2m(paddw, vars, vard)
#define paddb_m2r(var, reg) mmx_m2r(paddb, var, reg)
#define paddb_r2r(regs, regd) mmx_r2r(paddb, regs, regd)
#define paddb(vars, vard) mmx_m2m(paddb, vars, vard)
/* 4x16 and 8x8 Parallel ADDs using Saturation arithmetic
*/
#define paddsw_m2r(var, reg) mmx_m2r(paddsw, var, reg)
#define paddsw_r2r(regs, regd) mmx_r2r(paddsw, regs, regd)
#define paddsw(vars, vard) mmx_m2m(paddsw, vars, vard)
#define paddsb_m2r(var, reg) mmx_m2r(paddsb, var, reg)
#define paddsb_r2r(regs, regd) mmx_r2r(paddsb, regs, regd)
#define paddsb(vars, vard) mmx_m2m(paddsb, vars, vard)
/* 4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic
*/
#define paddusw_m2r(var, reg) mmx_m2r(paddusw, var, reg)
#define paddusw_r2r(regs, regd) mmx_r2r(paddusw, regs, regd)
#define paddusw(vars, vard) mmx_m2m(paddusw, vars, vard)
#define paddusb_m2r(var, reg) mmx_m2r(paddusb, var, reg)
#define paddusb_r2r(regs, regd) mmx_r2r(paddusb, regs, regd)
#define paddusb(vars, vard) mmx_m2m(paddusb, vars, vard)
/* 2x32, 4x16, and 8x8 Parallel SUBs
*/
#define psubd_m2r(var, reg) mmx_m2r(psubd, var, reg)
#define psubd_r2r(regs, regd) mmx_r2r(psubd, regs, regd)
#define psubd(vars, vard) mmx_m2m(psubd, vars, vard)
#define psubw_m2r(var, reg) mmx_m2r(psubw, var, reg)
#define psubw_r2r(regs, regd) mmx_r2r(psubw, regs, regd)
#define psubw(vars, vard) mmx_m2m(psubw, vars, vard)
#define psubb_m2r(var, reg) mmx_m2r(psubb, var, reg)
#define psubb_r2r(regs, regd) mmx_r2r(psubb, regs, regd)
#define psubb(vars, vard) mmx_m2m(psubb, vars, vard)
/* 4x16 and 8x8 Parallel SUBs using Saturation arithmetic
*/
#define psubsw_m2r(var, reg) mmx_m2r(psubsw, var, reg)
#define psubsw_r2r(regs, regd) mmx_r2r(psubsw, regs, regd)
#define psubsw(vars, vard) mmx_m2m(psubsw, vars, vard)
#define psubsb_m2r(var, reg) mmx_m2r(psubsb, var, reg)
#define psubsb_r2r(regs, regd) mmx_r2r(psubsb, regs, regd)
#define psubsb(vars, vard) mmx_m2m(psubsb, vars, vard)
/* 4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic
*/
#define psubusw_m2r(var, reg) mmx_m2r(psubusw, var, reg)
#define psubusw_r2r(regs, regd) mmx_r2r(psubusw, regs, regd)
#define psubusw(vars, vard) mmx_m2m(psubusw, vars, vard)
#define psubusb_m2r(var, reg) mmx_m2r(psubusb, var, reg)
#define psubusb_r2r(regs, regd) mmx_r2r(psubusb, regs, regd)
#define psubusb(vars, vard) mmx_m2m(psubusb, vars, vard)
/* 4x16 Parallel MULs giving Low 4x16 portions of results
*/
#define pmullw_m2r(var, reg) mmx_m2r(pmullw, var, reg)
#define pmullw_r2r(regs, regd) mmx_r2r(pmullw, regs, regd)
#define pmullw(vars, vard) mmx_m2m(pmullw, vars, vard)
/* 4x16 Parallel MULs giving High 4x16 portions of results
*/
#define pmulhw_m2r(var, reg) mmx_m2r(pmulhw, var, reg)
#define pmulhw_r2r(regs, regd) mmx_r2r(pmulhw, regs, regd)
#define pmulhw(vars, vard) mmx_m2m(pmulhw, vars, vard)
/* 4x16->2x32 Parallel Mul-ADD
(muls like pmullw, then adds adjacent 16-bit fields
in the multiply result to make the final 2x32 result)
*/
#define pmaddwd_m2r(var, reg) mmx_m2r(pmaddwd, var, reg)
#define pmaddwd_r2r(regs, regd) mmx_r2r(pmaddwd, regs, regd)
#define pmaddwd(vars, vard) mmx_m2m(pmaddwd, vars, vard)
/* 1x64 bitwise AND
*/
#ifdef BROKEN_PAND
#define pand_m2r(var, reg) \
{ \
mmx_m2r(pandn, (mmx_t) -1LL, reg); \
mmx_m2r(pandn, var, reg); \
}
#define pand_r2r(regs, regd) \
{ \
mmx_m2r(pandn, (mmx_t) -1LL, regd); \
mmx_r2r(pandn, regs, regd); \
}
#define pand(vars, vard) \
{ \
movq_m2r(vard, mm0); \
mmx_m2r(pandn, (mmx_t) -1LL, mm0); \
mmx_m2r(pandn, vars, mm0); \
movq_r2m(mm0, vard); \
}
#else
#define pand_m2r(var, reg) mmx_m2r(pand, var, reg)
#define pand_r2r(regs, regd) mmx_r2r(pand, regs, regd)
#define pand(vars, vard) mmx_m2m(pand, vars, vard)
#endif
/* 1x64 bitwise AND with Not the destination
*/
#define pandn_m2r(var, reg) mmx_m2r(pandn, var, reg)
#define pandn_r2r(regs, regd) mmx_r2r(pandn, regs, regd)
#define pandn(vars, vard) mmx_m2m(pandn, vars, vard)
/* 1x64 bitwise OR
*/
#define por_m2r(var, reg) mmx_m2r(por, var, reg)
#define por_r2r(regs, regd) mmx_r2r(por, regs, regd)
#define por(vars, vard) mmx_m2m(por, vars, vard)
/* 1x64 bitwise eXclusive OR
*/
#define pxor_m2r(var, reg) mmx_m2r(pxor, var, reg)
#define pxor_r2r(regs, regd) mmx_r2r(pxor, regs, regd)
#define pxor(vars, vard) mmx_m2m(pxor, vars, vard)
/* 2x32, 4x16, and 8x8 Parallel CoMPare for EQuality
(resulting fields are either 0 or -1)
*/
#define pcmpeqd_m2r(var, reg) mmx_m2r(pcmpeqd, var, reg)
#define pcmpeqd_r2r(regs, regd) mmx_r2r(pcmpeqd, regs, regd)
#define pcmpeqd(vars, vard) mmx_m2m(pcmpeqd, vars, vard)
#define pcmpeqw_m2r(var, reg) mmx_m2r(pcmpeqw, var, reg)
#define pcmpeqw_r2r(regs, regd) mmx_r2r(pcmpeqw, regs, regd)
#define pcmpeqw(vars, vard) mmx_m2m(pcmpeqw, vars, vard)
#define pcmpeqb_m2r(var, reg) mmx_m2r(pcmpeqb, var, reg)
#define pcmpeqb_r2r(regs, regd) mmx_r2r(pcmpeqb, regs, regd)
#define pcmpeqb(vars, vard) mmx_m2m(pcmpeqb, vars, vard)
/* 2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than
(resulting fields are either 0 or -1)
*/
#define pcmpgtd_m2r(var, reg) mmx_m2r(pcmpgtd, var, reg)
#define pcmpgtd_r2r(regs, regd) mmx_r2r(pcmpgtd, regs, regd)
#define pcmpgtd(vars, vard) mmx_m2m(pcmpgtd, vars, vard)
#define pcmpgtw_m2r(var, reg) mmx_m2r(pcmpgtw, var, reg)
#define pcmpgtw_r2r(regs, regd) mmx_r2r(pcmpgtw, regs, regd)
#define pcmpgtw(vars, vard) mmx_m2m(pcmpgtw, vars, vard)
#define pcmpgtb_m2r(var, reg) mmx_m2r(pcmpgtb, var, reg)
#define pcmpgtb_r2r(regs, regd) mmx_r2r(pcmpgtb, regs, regd)
#define pcmpgtb(vars, vard) mmx_m2m(pcmpgtb, vars, vard)
/* 1x64, 2x32, and 4x16 Parallel Shift Left Logical
*/
#define psllq_i2r(imm, reg) mmx_i2r(psllq, imm, reg)
#define psllq_m2r(var, reg) mmx_m2r(psllq, var, reg)
#define psllq_r2r(regs, regd) mmx_r2r(psllq, regs, regd)
#define psllq(vars, vard) mmx_m2m(psllq, vars, vard)
#define pslld_i2r(imm, reg) mmx_i2r(pslld, imm, reg)
#define pslld_m2r(var, reg) mmx_m2r(pslld, var, reg)
#define pslld_r2r(regs, regd) mmx_r2r(pslld, regs, regd)
#define pslld(vars, vard) mmx_m2m(pslld, vars, vard)
#define psllw_i2r(imm, reg) mmx_i2r(psllw, imm, reg)
#define psllw_m2r(var, reg) mmx_m2r(psllw, var, reg)
#define psllw_r2r(regs, regd) mmx_r2r(psllw, regs, regd)
#define psllw(vars, vard) mmx_m2m(psllw, vars, vard)
/* 1x64, 2x32, and 4x16 Parallel Shift Right Logical
*/
#define psrlq_i2r(imm, reg) mmx_i2r(psrlq, imm, reg)
#define psrlq_m2r(var, reg) mmx_m2r(psrlq, var, reg)
#define psrlq_r2r(regs, regd) mmx_r2r(psrlq, regs, regd)
#define psrlq(vars, vard) mmx_m2m(psrlq, vars, vard)
#define psrld_i2r(imm, reg) mmx_i2r(psrld, imm, reg)
#define psrld_m2r(var, reg) mmx_m2r(psrld, var, reg)
#define psrld_r2r(regs, regd) mmx_r2r(psrld, regs, regd)
#define psrld(vars, vard) mmx_m2m(psrld, vars, vard)
#define psrlw_i2r(imm, reg) mmx_i2r(psrlw, imm, reg)
#define psrlw_m2r(var, reg) mmx_m2r(psrlw, var, reg)
#define psrlw_r2r(regs, regd) mmx_r2r(psrlw, regs, regd)
#define psrlw(vars, vard) mmx_m2m(psrlw, vars, vard)
/* 2x32 and 4x16 Parallel Shift Right Arithmetic
*/
#define psrad_i2r(imm, reg) mmx_i2r(psrad, imm, reg)
#define psrad_m2r(var, reg) mmx_m2r(psrad, var, reg)
#define psrad_r2r(regs, regd) mmx_r2r(psrad, regs, regd)
#define psrad(vars, vard) mmx_m2m(psrad, vars, vard)
#define psraw_i2r(imm, reg) mmx_i2r(psraw, imm, reg)
#define psraw_m2r(var, reg) mmx_m2r(psraw, var, reg)
#define psraw_r2r(regs, regd) mmx_r2r(psraw, regs, regd)
#define psraw(vars, vard) mmx_m2m(psraw, vars, vard)
/* 2x32->4x16 and 4x16->8x8 PACK and Signed Saturate
(packs source and dest fields into dest in that order)
*/
#define packssdw_m2r(var, reg) mmx_m2r(packssdw, var, reg)
#define packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd)
#define packssdw(vars, vard) mmx_m2m(packssdw, vars, vard)
#define packsswb_m2r(var, reg) mmx_m2r(packsswb, var, reg)
#define packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd)
#define packsswb(vars, vard) mmx_m2m(packsswb, vars, vard)
/* 4x16->8x8 PACK and Unsigned Saturate
(packs source and dest fields into dest in that order)
*/
#define packuswb_m2r(var, reg) mmx_m2r(packuswb, var, reg)
#define packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd)
#define packuswb(vars, vard) mmx_m2m(packuswb, vars, vard)
/* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low
(interleaves low half of dest with low half of source
as padding in each result field)
*/
#define punpckldq_m2r(var, reg) mmx_m2r(punpckldq, var, reg)
#define punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd)
#define punpckldq(vars, vard) mmx_m2m(punpckldq, vars, vard)
#define punpcklwd_m2r(var, reg) mmx_m2r(punpcklwd, var, reg)
#define punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd)
#define punpcklwd(vars, vard) mmx_m2m(punpcklwd, vars, vard)
#define punpcklbw_m2r(var, reg) mmx_m2r(punpcklbw, var, reg)
#define punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd)
#define punpcklbw(vars, vard) mmx_m2m(punpcklbw, vars, vard)
/* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High
(interleaves high half of dest with high half of source
as padding in each result field)
*/
#define punpckhdq_m2r(var, reg) mmx_m2r(punpckhdq, var, reg)
#define punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd)
#define punpckhdq(vars, vard) mmx_m2m(punpckhdq, vars, vard)
#define punpckhwd_m2r(var, reg) mmx_m2r(punpckhwd, var, reg)
#define punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd)
#define punpckhwd(vars, vard) mmx_m2m(punpckhwd, vars, vard)
#define punpckhbw_m2r(var, reg) mmx_m2r(punpckhbw, var, reg)
#define punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd)
#define punpckhbw(vars, vard) mmx_m2m(punpckhbw, vars, vard)
/* Empty MMx State
(used to clean-up when going from mmx to float use
of the registers that are shared by both; note that
there is no float-to-mmx operation needed, because
only the float tag word info is corruptible)
*/
#ifdef MMX_TRACE
#define emms() \
{ \
fprintf(stderr, "emms()\n"); \
__asm__ __volatile__ ("emms"); \
}
#else
#define emms() __asm__ __volatile__ ("emms")
#endif
#endif

View file

@ -1,993 +0,0 @@
/* sse.h
Streaming SIMD Extenstions (a.k.a. Katmai New Instructions)
GCC interface library for IA32.
To use this library, simply include this header file
and compile with GCC. You MUST have inlining enabled
in order for sse_ok() to work; this can be done by
simply using -O on the GCC command line.
Compiling with -DSSE_TRACE will cause detailed trace
output to be sent to stderr for each sse operation.
This adds lots of code, and obviously slows execution to
a crawl, but can be very useful for debugging.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR ANY PARTICULAR PURPOSE.
1999 by R. Fisher
Based on libmmx by H. Dietz and R. Fisher
Notes:
This is still extremely alpha.
Because this library depends on an assembler which understands the
SSE opcodes, you probably won't be able to use this yet.
For now, do not use TRACE versions. These both make use
of the MMX registers, not the SSE registers. This will be resolved
at a later date.
ToDo:
Rewrite TRACE macros
Major Debugging Work
*/
#ifndef _SSE_H
#define _SSE_H
/* The type of an value that fits in an SSE register
(note that long long constant values MUST be suffixed
by LL and unsigned long long values by ULL, lest
they be truncated by the compiler)
*/
typedef union {
float sf[4]; /* Single-precision (32-bit) value */
} __attribute__ ((aligned (16))) sse_t; /* On a 16 byte (128-bit) boundary */
#if 0
/* Function to test if multimedia instructions are supported...
*/
inline extern int
mm_support(void)
{
/* Returns 1 if MMX instructions are supported,
3 if Cyrix MMX and Extended MMX instructions are supported
5 if AMD MMX and 3DNow! instructions are supported
9 if MMX and SSE instructions are supported
0 if hardware does not support any of these
*/
register int rval = 0;
__asm__ __volatile__ (
/* See if CPUID instruction is supported ... */
/* ... Get copies of EFLAGS into eax and ecx */
"pushf\n\t"
"popl %%eax\n\t"
"movl %%eax, %%ecx\n\t"
/* ... Toggle the ID bit in one copy and store */
/* to the EFLAGS reg */
"xorl $0x200000, %%eax\n\t"
"push %%eax\n\t"
"popf\n\t"
/* ... Get the (hopefully modified) EFLAGS */
"pushf\n\t"
"popl %%eax\n\t"
/* ... Compare and test result */
"xorl %%eax, %%ecx\n\t"
"testl $0x200000, %%ecx\n\t"
"jz NotSupported1\n\t" /* CPUID not supported */
/* Get standard CPUID information, and
go to a specific vendor section */
"movl $0, %%eax\n\t"
"cpuid\n\t"
/* Check for Intel */
"cmpl $0x756e6547, %%ebx\n\t"
"jne TryAMD\n\t"
"cmpl $0x49656e69, %%edx\n\t"
"jne TryAMD\n\t"
"cmpl $0x6c65746e, %%ecx\n"
"jne TryAMD\n\t"
"jmp Intel\n\t"
/* Check for AMD */
"\nTryAMD:\n\t"
"cmpl $0x68747541, %%ebx\n\t"
"jne TryCyrix\n\t"
"cmpl $0x69746e65, %%edx\n\t"
"jne TryCyrix\n\t"
"cmpl $0x444d4163, %%ecx\n"
"jne TryCyrix\n\t"
"jmp AMD\n\t"
/* Check for Cyrix */
"\nTryCyrix:\n\t"
"cmpl $0x69727943, %%ebx\n\t"
"jne NotSupported2\n\t"
"cmpl $0x736e4978, %%edx\n\t"
"jne NotSupported3\n\t"
"cmpl $0x64616574, %%ecx\n\t"
"jne NotSupported4\n\t"
/* Drop through to Cyrix... */
/* Cyrix Section */
/* See if extended CPUID level 80000001 is supported */
/* The value of CPUID/80000001 for the 6x86MX is undefined
according to the Cyrix CPU Detection Guide (Preliminary
Rev. 1.01 table 1), so we'll check the value of eax for
CPUID/0 to see if standard CPUID level 2 is supported.
According to the table, the only CPU which supports level
2 is also the only one which supports extended CPUID levels.
*/
"cmpl $0x2, %%eax\n\t"
"jne MMXtest\n\t" /* Use standard CPUID instead */
/* Extended CPUID supported (in theory), so get extended
features */
"movl $0x80000001, %%eax\n\t"
"cpuid\n\t"
"testl $0x00800000, %%eax\n\t" /* Test for MMX */
"jz NotSupported5\n\t" /* MMX not supported */
"testl $0x01000000, %%eax\n\t" /* Test for Ext'd MMX */
"jnz EMMXSupported\n\t"
"movl $1, %0:\n\n\t" /* MMX Supported */
"jmp Return\n\n"
"EMMXSupported:\n\t"
"movl $3, %0:\n\n\t" /* EMMX and MMX Supported */
"jmp Return\n\t"
/* AMD Section */
"AMD:\n\t"
/* See if extended CPUID is supported */
"movl $0x80000000, %%eax\n\t"
"cpuid\n\t"
"cmpl $0x80000000, %%eax\n\t"
"jl MMXtest\n\t" /* Use standard CPUID instead */
/* Extended CPUID supported, so get extended features */
"movl $0x80000001, %%eax\n\t"
"cpuid\n\t"
"testl $0x00800000, %%edx\n\t" /* Test for MMX */
"jz NotSupported6\n\t" /* MMX not supported */
"testl $0x80000000, %%edx\n\t" /* Test for 3DNow! */
"jnz ThreeDNowSupported\n\t"
"movl $1, %0:\n\n\t" /* MMX Supported */
"jmp Return\n\n"
"ThreeDNowSupported:\n\t"
"movl $5, %0:\n\n\t" /* 3DNow! and MMX Supported */
"jmp Return\n\t"
/* Intel Section */
"Intel:\n\t"
/* Check for SSE */
"SSEtest:\n\t"
"movl $1, %%eax\n\t"
"cpuid\n\t"
"testl $0x02000000, %%edx\n\t" /* Test for SSE */
"jz MMXtest\n\t" /* SSE Not supported */
"movl $9, %0:\n\n\t" /* SSE Supported */
"jmp Return\n\t"
/* Check for MMX */
"MMXtest:\n\t"
"movl $1, %%eax\n\t"
"cpuid\n\t"
"testl $0x00800000, %%edx\n\t" /* Test for MMX */
"jz NotSupported7\n\t" /* MMX Not supported */
"movl $1, %0:\n\n\t" /* MMX Supported */
"jmp Return\n\t"
/* Nothing supported */
"\nNotSupported1:\n\t"
"#movl $101, %0:\n\n\t"
"\nNotSupported2:\n\t"
"#movl $102, %0:\n\n\t"
"\nNotSupported3:\n\t"
"#movl $103, %0:\n\n\t"
"\nNotSupported4:\n\t"
"#movl $104, %0:\n\n\t"
"\nNotSupported5:\n\t"
"#movl $105, %0:\n\n\t"
"\nNotSupported6:\n\t"
"#movl $106, %0:\n\n\t"
"\nNotSupported7:\n\t"
"#movl $107, %0:\n\n\t"
"movl $0, %0:\n\n\t"
"Return:\n\t"
: "=a" (rval)
: /* no input */
: "eax", "ebx", "ecx", "edx"
);
/* Return */
return(rval);
}
/* Function to test if sse instructions are supported...
*/
inline extern int
sse_ok(void)
{
/* Returns 1 if SSE instructions are supported, 0 otherwise */
return ( (mm_support() & 0x8) >> 3 );
}
#endif
/* Helper functions for the instruction macros that follow...
(note that memory-to-register, m2r, instructions are nearly
as efficient as register-to-register, r2r, instructions;
however, memory-to-memory instructions are really simulated
as a convenience, and are only 1/3 as efficient)
*/
#ifdef SSE_TRACE
/* Include the stuff for printing a trace to stderr...
*/
#include <stdio.h>
#define sse_i2r(op, imm, reg) \
{ \
sse_t sse_trace; \
sse_trace.uq = (imm); \
fprintf(stderr, #op "_i2r(" #imm "=0x%08x%08x, ", \
sse_trace.d[1], sse_trace.d[0]); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (sse_trace) \
: /* nothing */ ); \
fprintf(stderr, #reg "=0x%08x%08x) => ", \
sse_trace.d[1], sse_trace.d[0]); \
__asm__ __volatile__ (#op " %0, %%" #reg \
: /* nothing */ \
: "X" (imm)); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (sse_trace) \
: /* nothing */ ); \
fprintf(stderr, #reg "=0x%08x%08x\n", \
sse_trace.d[1], sse_trace.d[0]); \
}
#define sse_m2r(op, mem, reg) \
{ \
sse_t sse_trace; \
sse_trace = (mem); \
fprintf(stderr, #op "_m2r(" #mem "=0x%08x%08x, ", \
sse_trace.d[1], sse_trace.d[0]); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (sse_trace) \
: /* nothing */ ); \
fprintf(stderr, #reg "=0x%08x%08x) => ", \
sse_trace.d[1], sse_trace.d[0]); \
__asm__ __volatile__ (#op " %0, %%" #reg \
: /* nothing */ \
: "X" (mem)); \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (sse_trace) \
: /* nothing */ ); \
fprintf(stderr, #reg "=0x%08x%08x\n", \
sse_trace.d[1], sse_trace.d[0]); \
}
#define sse_r2m(op, reg, mem) \
{ \
sse_t sse_trace; \
__asm__ __volatile__ ("movq %%" #reg ", %0" \
: "=X" (sse_trace) \
: /* nothing */ ); \
fprintf(stderr, #op "_r2m(" #reg "=0x%08x%08x, ", \
sse_trace.d[1], sse_trace.d[0]); \
sse_trace = (mem); \
fprintf(stderr, #mem "=0x%08x%08x) => ", \
sse_trace.d[1], sse_trace.d[0]); \
__asm__ __volatile__ (#op " %%" #reg ", %0" \
: "=X" (mem) \
: /* nothing */ ); \
sse_trace = (mem); \
fprintf(stderr, #mem "=0x%08x%08x\n", \
sse_trace.d[1], sse_trace.d[0]); \
}
#define sse_r2r(op, regs, regd) \
{ \
sse_t sse_trace; \
__asm__ __volatile__ ("movq %%" #regs ", %0" \
: "=X" (sse_trace) \
: /* nothing */ ); \
fprintf(stderr, #op "_r2r(" #regs "=0x%08x%08x, ", \
sse_trace.d[1], sse_trace.d[0]); \
__asm__ __volatile__ ("movq %%" #regd ", %0" \
: "=X" (sse_trace) \
: /* nothing */ ); \
fprintf(stderr, #regd "=0x%08x%08x) => ", \
sse_trace.d[1], sse_trace.d[0]); \
__asm__ __volatile__ (#op " %" #regs ", %" #regd); \
__asm__ __volatile__ ("movq %%" #regd ", %0" \
: "=X" (sse_trace) \
: /* nothing */ ); \
fprintf(stderr, #regd "=0x%08x%08x\n", \
sse_trace.d[1], sse_trace.d[0]); \
}
#define sse_m2m(op, mems, memd) \
{ \
sse_t sse_trace; \
sse_trace = (mems); \
fprintf(stderr, #op "_m2m(" #mems "=0x%08x%08x, ", \
sse_trace.d[1], sse_trace.d[0]); \
sse_trace = (memd); \
fprintf(stderr, #memd "=0x%08x%08x) => ", \
sse_trace.d[1], sse_trace.d[0]); \
__asm__ __volatile__ ("movq %0, %%mm0\n\t" \
#op " %1, %%mm0\n\t" \
"movq %%mm0, %0" \
: "=X" (memd) \
: "X" (mems)); \
sse_trace = (memd); \
fprintf(stderr, #memd "=0x%08x%08x\n", \
sse_trace.d[1], sse_trace.d[0]); \
}
#else
/* These macros are a lot simpler without the tracing...
*/
#define sse_i2r(op, imm, reg) \
__asm__ __volatile__ (#op " %0, %%" #reg \
: /* nothing */ \
: "X" (imm) )
#define sse_m2r(op, mem, reg) \
__asm__ __volatile__ (#op " %0, %%" #reg \
: /* nothing */ \
: "X" (mem))
#define sse_r2m(op, reg, mem) \
__asm__ __volatile__ (#op " %%" #reg ", %0" \
: "=X" (mem) \
: /* nothing */ )
#define sse_r2r(op, regs, regd) \
__asm__ __volatile__ (#op " %" #regs ", %" #regd)
#define sse_r2ri(op, regs, regd, imm) \
__asm__ __volatile__ (#op " %0, %%" #regs ", %%" #regd \
: /* nothing */ \
: "X" (imm) )
/* Load data from mems to xmmreg, operate on xmmreg, and store data to memd */
#define sse_m2m(op, mems, memd, xmmreg) \
__asm__ __volatile__ ("movups %0, %%xmm0\n\t" \
#op " %1, %%xmm0\n\t" \
"movups %%mm0, %0" \
: "=X" (memd) \
: "X" (mems))
#define sse_m2ri(op, mem, reg, subop) \
__asm__ __volatile__ (#op " %0, %%" #reg ", " #subop \
: /* nothing */ \
: "X" (mem))
#define sse_m2mi(op, mems, memd, xmmreg, subop) \
__asm__ __volatile__ ("movups %0, %%xmm0\n\t" \
#op " %1, %%xmm0, " #subop "\n\t" \
"movups %%mm0, %0" \
: "=X" (memd) \
: "X" (mems))
#endif
/* 1x128 MOVe Aligned four Packed Single-fp
*/
#define movaps_m2r(var, reg) sse_m2r(movaps, var, reg)
#define movaps_r2m(reg, var) sse_r2m(movaps, reg, var)
#define movaps_r2r(regs, regd) sse_r2r(movaps, regs, regd)
#define movaps(vars, vard) \
__asm__ __volatile__ ("movaps %1, %%mm0\n\t" \
"movaps %%mm0, %0" \
: "=X" (vard) \
: "X" (vars))
/* 1x128 MOVe aligned Non-Temporal four Packed Single-fp
*/
#define movntps_r2m(xmmreg, var) sse_r2m(movntps, xmmreg, var)
/* 1x64 MOVe Non-Temporal Quadword
*/
#define movntq_r2m(mmreg, var) sse_r2m(movntq, mmreg, var)
/* 1x128 MOVe Unaligned four Packed Single-fp
*/
#define movups_m2r(var, reg) sse_m2r(movups, var, reg)
#define movups_r2m(reg, var) sse_r2m(movups, reg, var)
#define movups_r2r(regs, regd) sse_r2r(movups, regs, regd)
#define movups(vars, vard) \
__asm__ __volatile__ ("movups %1, %%mm0\n\t" \
"movups %%mm0, %0" \
: "=X" (vard) \
: "X" (vars))
/* MOVe High to Low Packed Single-fp
high half of 4x32f (x) -> low half of 4x32f (y)
*/
#define movhlps_r2r(regs, regd) sse_r2r(movhlps, regs, regd)
/* MOVe Low to High Packed Single-fp
low half of 4x32f (x) -> high half of 4x32f (y)
*/
#define movlhps_r2r(regs, regd) sse_r2r(movlhps, regs, regd)
/* MOVe High Packed Single-fp
2x32f -> high half of 4x32f
*/
#define movhps_m2r(var, reg) sse_m2r(movhps, var, reg)
#define movhps_r2m(reg, var) sse_r2m(movhps, reg, var)
#define movhps(vars, vard) \
__asm__ __volatile__ ("movhps %1, %%mm0\n\t" \
"movhps %%mm0, %0" \
: "=X" (vard) \
: "X" (vars))
/* MOVe Low Packed Single-fp
2x32f -> low half of 4x32f
*/
#define movlps_m2r(var, reg) sse_m2r(movlps, var, reg)
#define movlps_r2m(reg, var) sse_r2m(movlps, reg, var)
#define movlps(vars, vard) \
__asm__ __volatile__ ("movlps %1, %%mm0\n\t" \
"movlps %%mm0, %0" \
: "=X" (vard) \
: "X" (vars))
/* MOVe Scalar Single-fp
lowest field of 4x32f (x) -> lowest field of 4x32f (y)
*/
#define movss_m2r(var, reg) sse_m2r(movss, var, reg)
#define movss_r2m(reg, var) sse_r2m(movss, reg, var)
#define movss_r2r(regs, regd) sse_r2r(movss, regs, regd)
#define movss(vars, vard) \
__asm__ __volatile__ ("movss %1, %%mm0\n\t" \
"movss %%mm0, %0" \
: "=X" (vard) \
: "X" (vars))
/* 4x16 Packed SHUFfle Word
*/
#define pshufw_m2r(var, reg, index) sse_m2ri(pshufw, var, reg, index)
#define pshufw_r2r(regs, regd, index) sse_r2ri(pshufw, regs, regd, index)
/* 1x128 SHUFfle Packed Single-fp
*/
#define shufps_m2r(var, reg, index) sse_m2ri(shufps, var, reg, index)
#define shufps_r2r(regs, regd, index) sse_r2ri(shufps, regs, regd, index)
/* ConVerT Packed signed Int32 to(2) Packed Single-fp
*/
#define cvtpi2ps_m2r(var, xmmreg) sse_m2r(cvtpi2ps, var, xmmreg)
#define cvtpi2ps_r2r(mmreg, xmmreg) sse_r2r(cvtpi2ps, mmreg, xmmreg)
/* ConVerT Packed Single-fp to(2) Packed signed Int32
*/
#define cvtps2pi_m2r(var, mmreg) sse_m2r(cvtps2pi, var, mmreg)
#define cvtps2pi_r2r(xmmreg, mmreg) sse_r2r(cvtps2pi, mmreg, xmmreg)
/* ConVerT with Truncate Packed Single-fp to(2) Packed Int32
*/
#define cvttps2pi_m2r(var, mmreg) sse_m2r(cvttps2pi, var, mmreg)
#define cvttps2pi_r2r(xmmreg, mmreg) sse_r2r(cvttps2pi, mmreg, xmmreg)
/* ConVerT Signed Int32 to(2) Single-fp (Scalar)
*/
#define cvtsi2ss_m2r(var, xmmreg) sse_m2r(cvtsi2ss, var, xmmreg)
#define cvtsi2ss_r2r(reg, xmmreg) sse_r2r(cvtsi2ss, reg, xmmreg)
/* ConVerT Scalar Single-fp to(2) Signed Int32
*/
#define cvtss2si_m2r(var, reg) sse_m2r(cvtss2si, var, reg)
#define cvtss2si_r2r(xmmreg, reg) sse_r2r(cvtss2si, xmmreg, reg)
/* ConVerT with Truncate Scalar Single-fp to(2) Signed Int32
*/
#define cvttss2si_m2r(var, reg) sse_m2r(cvtss2si, var, reg)
#define cvttss2si_r2r(xmmreg, reg) sse_r2r(cvtss2si, xmmreg, reg)
/* Parallel EXTRact Word from 4x16
*/
#define pextrw_r2r(mmreg, reg, field) sse_r2ri(pextrw, mmreg, reg, field)
/* Parallel INSeRt Word from 4x16
*/
#define pinsrw_r2r(reg, mmreg, field) sse_r2ri(pinsrw, reg, mmreg, field)
/* MOVe MaSK from Packed Single-fp
*/
#ifdef SSE_TRACE
#define movmskps(xmmreg, reg) \
{ \
fprintf(stderr, "movmskps()\n"); \
__asm__ __volatile__ ("movmskps %" #xmmreg ", %" #reg) \
}
#else
#define movmskps(xmmreg, reg) \
__asm__ __volatile__ ("movmskps %" #xmmreg ", %" #reg)
#endif
/* Parallel MOVe MaSK from mmx reg to 32-bit reg
*/
#ifdef SSE_TRACE
#define pmovmskb(mmreg, reg) \
{ \
fprintf(stderr, "movmskps()\n"); \
__asm__ __volatile__ ("movmskps %" #mmreg ", %" #reg) \
}
#else
#define pmovmskb(mmreg, reg) \
__asm__ __volatile__ ("movmskps %" #mmreg ", %" #reg)
#endif
/* MASKed MOVe from 8x8 to memory pointed to by (e)di register
*/
#define maskmovq(mmregs, fieldreg) sse_r2ri(maskmovq, mmregs, fieldreg)
/* 4x32f Parallel ADDs
*/
#define addps_m2r(var, reg) sse_m2r(addps, var, reg)
#define addps_r2r(regs, regd) sse_r2r(addps, regs, regd)
#define addps(vars, vard, xmmreg) sse_m2m(addps, vars, vard, xmmreg)
/* Lowest Field of 4x32f Parallel ADDs
*/
#define addss_m2r(var, reg) sse_m2r(addss, var, reg)
#define addss_r2r(regs, regd) sse_r2r(addss, regs, regd)
#define addss(vars, vard, xmmreg) sse_m2m(addss, vars, vard, xmmreg)
/* 4x32f Parallel SUBs
*/
#define subps_m2r(var, reg) sse_m2r(subps, var, reg)
#define subps_r2r(regs, regd) sse_r2r(subps, regs, regd)
#define subps(vars, vard, xmmreg) sse_m2m(subps, vars, vard, xmmreg)
/* Lowest Field of 4x32f Parallel SUBs
*/
#define subss_m2r(var, reg) sse_m2r(subss, var, reg)
#define subss_r2r(regs, regd) sse_r2r(subss, regs, regd)
#define subss(vars, vard, xmmreg) sse_m2m(subss, vars, vard, xmmreg)
/* 8x8u -> 4x16u Packed Sum of Absolute Differences
*/
#define psadbw_m2r(var, reg) sse_m2r(psadbw, var, reg)
#define psadbw_r2r(regs, regd) sse_r2r(psadbw, regs, regd)
#define psadbw(vars, vard, mmreg) sse_m2m(psadbw, vars, vard, mmreg)
/* 4x16u Parallel MUL High Unsigned
*/
#define pmulhuw_m2r(var, reg) sse_m2r(pmulhuw, var, reg)
#define pmulhuw_r2r(regs, regd) sse_r2r(pmulhuw, regs, regd)
#define pmulhuw(vars, vard, mmreg) sse_m2m(pmulhuw, vars, vard, mmreg)
/* 4x32f Parallel MULs
*/
#define mulps_m2r(var, reg) sse_m2r(mulps, var, reg)
#define mulps_r2r(regs, regd) sse_r2r(mulps, regs, regd)
#define mulps(vars, vard, xmmreg) sse_m2m(mulps, vars, vard, xmmreg)
/* Lowest Field of 4x32f Parallel MULs
*/
#define mulss_m2r(var, reg) sse_m2r(mulss, var, reg)
#define mulss_r2r(regs, regd) sse_r2r(mulss, regs, regd)
#define mulss(vars, vard, xmmreg) sse_m2m(mulss, vars, vard, xmmreg)
/* 4x32f Parallel DIVs
*/
#define divps_m2r(var, reg) sse_m2r(divps, var, reg)
#define divps_r2r(regs, regd) sse_r2r(divps, regs, regd)
#define divps(vars, vard, xmmreg) sse_m2m(divps, vars, vard, xmmreg)
/* Lowest Field of 4x32f Parallel DIVs
*/
#define divss_m2r(var, reg) sse_m2r(divss, var, reg)
#define divss_r2r(regs, regd) sse_r2r(divss, regs, regd)
#define divss(vars, vard, xmmreg) sse_m2m(divss, vars, vard, xmmreg)
/* 4x32f Parallel Reciprocals
*/
#define rcpps_m2r(var, reg) sse_m2r(rcpps, var, reg)
#define rcpps_r2r(regs, regd) sse_r2r(rcpps, regs, regd)
#define rcpps(vars, vard, xmmreg) sse_m2m(rcpps, vars, vard, xmmreg)
/* Lowest Field of 4x32f Parallel Reciprocals
*/
#define rcpss_m2r(var, reg) sse_m2r(rcpss, var, reg)
#define rcpss_r2r(regs, regd) sse_r2r(rcpss, regs, regd)
#define rcpss(vars, vard, xmmreg) sse_m2m(rcpss, vars, vard, xmmreg)
/* 4x32f Parallel Square Root of Reciprocals
*/
#define rsqrtps_m2r(var, reg) sse_m2r(rsqrtps, var, reg)
#define rsqrtps_r2r(regs, regd) sse_r2r(rsqrtps, regs, regd)
#define rsqrtps(vars, vard, xmmreg) sse_m2m(rsqrtps, vars, vard, xmmreg)
/* Lowest Field of 4x32f Parallel Square Root of Reciprocals
*/
#define rsqrtss_m2r(var, reg) sse_m2r(rsqrtss, var, reg)
#define rsqrtss_r2r(regs, regd) sse_r2r(rsqrtss, regs, regd)
#define rsqrtss(vars, vard, xmmreg) sse_m2m(rsqrtss, vars, vard, xmmreg)
/* 4x32f Parallel Square Roots
*/
#define sqrtps_m2r(var, reg) sse_m2r(sqrtps, var, reg)
#define sqrtps_r2r(regs, regd) sse_r2r(sqrtps, regs, regd)
#define sqrtps(vars, vard, xmmreg) sse_m2m(sqrtps, vars, vard, xmmreg)
/* Lowest Field of 4x32f Parallel Square Roots
*/
#define sqrtss_m2r(var, reg) sse_m2r(sqrtss, var, reg)
#define sqrtss_r2r(regs, regd) sse_r2r(sqrtss, regs, regd)
#define sqrtss(vars, vard, xmmreg) sse_m2m(sqrtss, vars, vard, xmmreg)
/* 8x8u and 4x16u Parallel AVeraGe
*/
#define pavgb_m2r(var, reg) sse_m2r(pavgb, var, reg)
#define pavgb_r2r(regs, regd) sse_r2r(pavgb, regs, regd)
#define pavgb(vars, vard, mmreg) sse_m2m(pavgb, vars, vard, mmreg)
#define pavgw_m2r(var, reg) sse_m2r(pavgw, var, reg)
#define pavgw_r2r(regs, regd) sse_r2r(pavgw, regs, regd)
#define pavgw(vars, vard, mmreg) sse_m2m(pavgw, vars, vard, mmreg)
/* 1x128 bitwise AND
*/
#define andps_m2r(var, reg) sse_m2r(andps, var, reg)
#define andps_r2r(regs, regd) sse_r2r(andps, regs, regd)
#define andps(vars, vard, xmmreg) sse_m2m(andps, vars, vard, xmmreg)
/* 1x128 bitwise AND with Not the destination
*/
#define andnps_m2r(var, reg) sse_m2r(andnps, var, reg)
#define andnps_r2r(regs, regd) sse_r2r(andnps, regs, regd)
#define andnps(vars, vard, xmmreg) sse_m2m(andnps, vars, vard, xmmreg)
/* 1x128 bitwise OR
*/
#define orps_m2r(var, reg) sse_m2r(orps, var, reg)
#define orps_r2r(regs, regd) sse_r2r(orps, regs, regd)
#define orps(vars, vard, xmmreg) sse_m2m(orps, vars, vard, xmmreg)
/* 1x128 bitwise eXclusive OR
*/
#define xorps_m2r(var, reg) sse_m2r(xorps, var, reg)
#define xorps_r2r(regs, regd) sse_r2r(xorps, regs, regd)
#define xorps(vars, vard, xmmreg) sse_m2m(xorps, vars, vard, xmmreg)
/* 8x8u, 4x16, and 4x32f Parallel Maximum
*/
#define pmaxub_m2r(var, reg) sse_m2r(pmaxub, var, reg)
#define pmaxub_r2r(regs, regd) sse_r2r(pmaxub, regs, regd)
#define pmaxub(vars, vard, mmreg) sse_m2m(pmaxub, vars, vard, mmreg)
#define pmaxsw_m2r(var, reg) sse_m2r(pmaxsw, var, reg)
#define pmaxsw_r2r(regs, regd) sse_r2r(pmaxsw, regs, regd)
#define pmaxsw(vars, vard, mmreg) sse_m2m(pmaxsw, vars, vard, mmreg)
#define maxps_m2r(var, reg) sse_m2r(maxps, var, reg)
#define maxps_r2r(regs, regd) sse_r2r(maxps, regs, regd)
#define maxps(vars, vard, xmmreg) sse_m2m(maxps, vars, vard, xmmreg)
/* Lowest Field of 4x32f Parallel Maximum
*/
#define maxss_m2r(var, reg) sse_m2r(maxss, var, reg)
#define maxss_r2r(regs, regd) sse_r2r(maxss, regs, regd)
#define maxss(vars, vard, xmmreg) sse_m2m(maxss, vars, vard, xmmreg)
/* 8x8u, 4x16, and 4x32f Parallel Minimum
*/
#define pminub_m2r(var, reg) sse_m2r(pminub, var, reg)
#define pminub_r2r(regs, regd) sse_r2r(pminub, regs, regd)
#define pminub(vars, vard, mmreg) sse_m2m(pminub, vars, vard, mmreg)
#define pminsw_m2r(var, reg) sse_m2r(pminsw, var, reg)
#define pminsw_r2r(regs, regd) sse_r2r(pminsw, regs, regd)
#define pminsw(vars, vard, mmreg) sse_m2m(pminsw, vars, vard, mmreg)
#define minps_m2r(var, reg) sse_m2r(minps, var, reg)
#define minps_r2r(regs, regd) sse_r2r(minps, regs, regd)
#define minps(vars, vard, xmmreg) sse_m2m(minps, vars, vard, xmmreg)
/* Lowest Field of 4x32f Parallel Minimum
*/
#define minss_m2r(var, reg) sse_m2r(minss, var, reg)
#define minss_r2r(regs, regd) sse_r2r(minss, regs, regd)
#define minss(vars, vard, xmmreg) sse_m2m(minss, vars, vard, xmmreg)
/* 4x32f Parallel CoMPares
(resulting fields are either 0 or -1)
*/
#define cmpps_m2r(var, reg, op) sse_m2ri(cmpps, var, reg, op)
#define cmpps_r2r(regs, regd, op) sse_r2ri(cmpps, regs, regd, op)
#define cmpps(vars, vard, op, xmmreg) sse_m2mi(cmpps, vars, vard, xmmreg, op)
#define cmpeqps_m2r(var, reg) sse_m2ri(cmpps, var, reg, 0)
#define cmpeqps_r2r(regs, regd) sse_r2ri(cmpps, regs, regd, 0)
#define cmpeqps(vars, vard, xmmreg) sse_m2mi(cmpps, vars, vard, xmmreg, 0)
#define cmpltps_m2r(var, reg) sse_m2ri(cmpps, var, reg, 1)
#define cmpltps_r2r(regs, regd) sse_r2ri(cmpps, regs, regd, 1)
#define cmpltps(vars, vard, xmmreg) sse_m2mi(cmpps, vars, vard, xmmreg, 1)
#define cmpleps_m2r(var, reg) sse_m2ri(cmpps, var, reg, 2)
#define cmpleps_r2r(regs, regd) sse_r2ri(cmpps, regs, regd, 2)
#define cmpleps(vars, vard, xmmreg) sse_m2mi(cmpps, vars, vard, xmmreg, 2)
#define cmpunordps_m2r(var, reg) sse_m2ri(cmpps, var, reg, 3)
#define cmpunordps_r2r(regs, regd) sse_r2ri(cmpps, regs, regd, 3)
#define cmpunordps(vars, vard, xmmreg) sse_m2mi(cmpps, vars, vard, xmmreg, 3)
#define cmpneqps_m2r(var, reg) sse_m2ri(cmpps, var, reg, 4)
#define cmpneqps_r2r(regs, regd) sse_r2ri(cmpps, regs, regd, 4)
#define cmpneqps(vars, vard, xmmreg) sse_m2mi(cmpps, vars, vard, xmmreg, 4)
#define cmpnltps_m2r(var, reg) sse_m2ri(cmpps, var, reg, 5)
#define cmpnltps_r2r(regs, regd) sse_r2ri(cmpps, regs, regd, 5)
#define cmpnltps(vars, vard, xmmreg) sse_m2mi(cmpps, vars, vard, xmmreg, 5)
#define cmpnleps_m2r(var, reg) sse_m2ri(cmpps, var, reg, 6)
#define cmpnleps_r2r(regs, regd) sse_r2ri(cmpps, regs, regd, 6)
#define cmpnleps(vars, vard, xmmreg) sse_m2mi(cmpps, vars, vard, xmmreg, 6)
#define cmpordps_m2r(var, reg) sse_m2ri(cmpps, var, reg, 7)
#define cmpordps_r2r(regs, regd) sse_r2ri(cmpps, regs, regd, 7)
#define cmpordps(vars, vard, xmmreg) sse_m2mi(cmpps, vars, vard, xmmreg, 7)
/* Lowest Field of 4x32f Parallel CoMPares
(resulting fields are either 0 or -1)
*/
#define cmpss_m2r(var, reg, op) sse_m2ri(cmpss, var, reg, op)
#define cmpss_r2r(regs, regd, op) sse_r2ri(cmpss, regs, regd, op)
#define cmpss(vars, vard, op, xmmreg) sse_m2mi(cmpss, vars, vard, xmmreg, op)
#define cmpeqss_m2r(var, reg) sse_m2ri(cmpss, var, reg, 0)
#define cmpeqss_r2r(regs, regd) sse_r2ri(cmpss, regs, regd, 0)
#define cmpeqss(vars, vard, xmmreg) sse_m2mi(cmpss, vars, vard, xmmreg, 0)
#define cmpltss_m2r(var, reg) sse_m2ri(cmpss, var, reg, 1)
#define cmpltss_r2r(regs, regd) sse_r2ri(cmpss, regs, regd, 1)
#define cmpltss(vars, vard, xmmreg) sse_m2mi(cmpss, vars, vard, xmmreg, 1)
#define cmpless_m2r(var, reg) sse_m2ri(cmpss, var, reg, 2)
#define cmpless_r2r(regs, regd) sse_r2ri(cmpss, regs, regd, 2)
#define cmpless(vars, vard, xmmreg) sse_m2mi(cmpss, vars, vard, xmmreg, 2)
#define cmpunordss_m2r(var, reg) sse_m2ri(cmpss, var, reg, 3)
#define cmpunordss_r2r(regs, regd) sse_r2ri(cmpss, regs, regd, 3)
#define cmpunordss(vars, vard, xmmreg) sse_m2mi(cmpss, vars, vard, xmmreg, 3)
#define cmpneqss_m2r(var, reg) sse_m2ri(cmpss, var, reg, 4)
#define cmpneqss_r2r(regs, regd) sse_r2ri(cmpss, regs, regd, 4)
#define cmpneqss(vars, vard, xmmreg) sse_m2mi(cmpss, vars, vard, xmmreg, 4)
#define cmpnltss_m2r(var, reg) sse_m2ri(cmpss, var, reg, 5)
#define cmpnltss_r2r(regs, regd) sse_r2ri(cmpss, regs, regd, 5)
#define cmpnltss(vars, vard, xmmreg) sse_m2mi(cmpss, vars, vard, xmmreg, 5)
#define cmpnless_m2r(var, reg) sse_m2ri(cmpss, var, reg, 6)
#define cmpnless_r2r(regs, regd) sse_r2ri(cmpss, regs, regd, 6)
#define cmpnless(vars, vard, xmmreg) sse_m2mi(cmpss, vars, vard, xmmreg, 6)
#define cmpordss_m2r(var, reg) sse_m2ri(cmpss, var, reg, 7)
#define cmpordss_r2r(regs, regd) sse_r2ri(cmpss, regs, regd, 7)
#define cmpordss(vars, vard, xmmreg) sse_m2mi(cmpss, vars, vard, xmmreg, 7)
/* Lowest Field of 4x32f Parallel CoMPares to set EFLAGS
(resulting fields are either 0 or -1)
*/
#define comiss_m2r(var, reg) sse_m2r(comiss, var, reg)
#define comiss_r2r(regs, regd) sse_r2r(comiss, regs, regd)
#define comiss(vars, vard, xmmreg) sse_m2m(comiss, vars, vard, xmmreg)
/* Lowest Field of 4x32f Unordered Parallel CoMPares to set EFLAGS
(resulting fields are either 0 or -1)
*/
#define ucomiss_m2r(var, reg) sse_m2r(ucomiss, var, reg)
#define ucomiss_r2r(regs, regd) sse_r2r(ucomiss, regs, regd)
#define ucomiss(vars, vard, xmmreg) sse_m2m(ucomiss, vars, vard, xmmreg)
/* 2-(4x32f) -> 4x32f UNPaCK Low Packed Single-fp
(interleaves low half of dest with low half of source
as padding in each result field)
*/
#define unpcklps_m2r(var, reg) sse_m2r(unpcklps, var, reg)
#define unpcklps_r2r(regs, regd) sse_r2r(unpcklps, regs, regd)
/* 2-(4x32f) -> 4x32f UNPaCK High Packed Single-fp
(interleaves high half of dest with high half of source
as padding in each result field)
*/
#define unpckhps_m2r(var, reg) sse_m2r(unpckhps, var, reg)
#define unpckhps_r2r(regs, regd) sse_r2r(unpckhps, regs, regd)
/* Fp and mmX ReSTORe state
*/
#ifdef SSE_TRACE
#define fxrstor(mem) \
{ \
fprintf(stderr, "fxrstor()\n"); \
__asm__ __volatile__ ("fxrstor %0" \
: /* nothing */ \
: "X" (mem)) \
}
#else
#define fxrstor(mem) \
__asm__ __volatile__ ("fxrstor %0" \
: /* nothing */ \
: "X" (mem))
#endif
/* Fp and mmX SAVE state
*/
#ifdef SSE_TRACE
#define fxsave(mem) \
{ \
fprintf(stderr, "fxsave()\n"); \
__asm__ __volatile__ ("fxsave %0" \
: /* nothing */ \
: "X" (mem)) \
}
#else
#define fxsave(mem) \
__asm__ __volatile__ ("fxsave %0" \
: /* nothing */ \
: "X" (mem))
#endif
/* STore streaMing simd eXtensions Control/Status Register
*/
#ifdef SSE_TRACE
#define stmxcsr(mem) \
{ \
fprintf(stderr, "stmxcsr()\n"); \
__asm__ __volatile__ ("stmxcsr %0" \
: /* nothing */ \
: "X" (mem)) \
}
#else
#define stmxcsr(mem) \
__asm__ __volatile__ ("stmxcsr %0" \
: /* nothing */ \
: "X" (mem))
#endif
/* LoaD streaMing simd eXtensions Control/Status Register
*/
#ifdef SSE_TRACE
#define ldmxcsr(mem) \
{ \
fprintf(stderr, "ldmxcsr()\n"); \
__asm__ __volatile__ ("ldmxcsr %0" \
: /* nothing */ \
: "X" (mem)) \
}
#else
#define ldmxcsr(mem) \
__asm__ __volatile__ ("ldmxcsr %0" \
: /* nothing */ \
: "X" (mem))
#endif
/* Store FENCE - enforce ordering of stores before fence vs. stores
occuring after fence in source code.
*/
#ifdef SSE_TRACE
#define sfence() \
{ \
fprintf(stderr, "sfence()\n"); \
__asm__ __volatile__ ("sfence\n\t") \
}
#else
#define sfence() \
__asm__ __volatile__ ("sfence\n\t")
#endif
/* PREFETCH data using T0, T1, T2, or NTA hint
T0 = Prefetch into all cache levels
T1 = Prefetch into all cache levels except 0th level
T2 = Prefetch into all cache levels except 0th and 1st levels
NTA = Prefetch data into non-temporal cache structure
*/
#ifdef SSE_TRACE
#else
#define prefetch(mem, hint) \
__asm__ __volatile__ ("prefetch" #hint " %0" \
: /* nothing */ \
: "X" (mem))
#define prefetcht0(mem) prefetch(mem, t0)
#define prefetcht1(mem) prefetch(mem, t1)
#define prefetcht2(mem) prefetch(mem, t2)
#define prefetchnta(mem) prefetch(mem, nta)
#endif
#endif