tracer: tsplot: a new tool to draw buffer-ts vs. clock time graphs

This tool helps to inspect data flow on each pad. It shows buffer timestamps
and events in relation to wall clock.
This commit is contained in:
Stefan Sauer 2017-02-09 15:15:23 +01:00
parent 9666adcb5e
commit 7da9662d3b

185
tracer/gsttr-tsplot.py Normal file
View file

@ -0,0 +1,185 @@
#!/usr/bin/env python3
'''
How to run:
1) generate a log
GST_DEBUG="GST_TRACER:7" GST_TRACERS=stats GST_DEBUG_FILE=trace.log <application>
2) generate the images
python3 gsttr-tsplot.py trace.log <outdir>
eog <outdir>/*.png
'''
# TODO:
# - the event labels are still way too dense
# - ideally each event is a vertical line
# http://stackoverflow.com/questions/35105672/vertical-lines-from-data-in-file-in-time-series-plot-using-gnuplot
# - this won't work well if the event is e.g. 'qos'
# - we could sort them by event type and separarate them by double new-lines,
# we'd then use 'index <x>' to plot them in different colors with
# - instead of just skipping duplicates, we could count them, store min/max ts
# and draw segments (is there something like labeled horizontal error bars?)
import logging
import os
from subprocess import Popen, PIPE, DEVNULL
from string import Template
from tracer.analysis_runner import AnalysisRunner
from tracer.analyzer import Analyzer
from tracer.parser import Parser
from tracer.structure import Structure
logging.basicConfig(level=logging.WARNING)
logger = logging.getLogger('gsttr-tsplot')
_HANDLED_CLASSES = ('buffer', 'event', 'new-pad', 'new-element')
_GST_BUFFER_FLAG_DISCONT = (1<<6)
_PLOT_SCRIPT_HEAD = Template(
'''set term png truecolor size $width,$height
''')
_PLOT_SCRIPT_BODY = Template(
'''set output '$png_file_name'
plot '$buf_file_name' using 1:2 with linespoints title '$pad_name', \
'$ev_file_name' using 1:(0):2 with labels rotate center font ',7' notitle')
''')
class TsPlot(Analyzer):
'''Generate a timestamp plots from a tracer log.
These show the buffer pts on the y-axis and the wall-clock time the buffer
was produced on the x-axis. This helps to spot timing issues, such as
stalled elements.
'''
def __init__(self, outdir, show_ghost_pads, size):
super(TsPlot, self).__init__()
self.outdir = outdir
self.show_ghost_pads = show_ghost_pads
self.params = {
'width': size[0],
'height': size[1],
}
self.buf_files = {}
self.ev_files = {}
self.element_names = {}
self.pad_names = {}
self.ev_labels = {}
def _get_data_file(self, files, key, name_template):
data_file = files.get(key)
if not data_file:
pad_name = self.pad_names.get(key)
if pad_name:
file_name = name_template % (self.outdir, key, pad_name)
data_file = open(file_name, 'w')
files[key] = data_file
return data_file
def handle_tracer_entry(self, event):
if event[Parser.F_FUNCTION]:
return
msg = event[Parser.F_MESSAGE]
p = msg.find(',')
if p == -1:
return
entry_name = msg[:p]
if entry_name not in _HANDLED_CLASSES:
return
try:
s = Structure(msg)
except ValueError:
logger.warning("failed to parse: '%s'", msg)
return
if entry_name == 'new-element':
ix = int(s.values['ix'])
self.element_names[ix] = s.values['name']
elif entry_name == 'new-pad':
pad_type = s.values['type']
if pad_type not in ['GstGhostPad', 'GstProxyPad']:
parent_ix = int(s.values['parent-ix'])
parent_name = self.element_names.get(parent_ix, '')
ix = int(s.values['ix'])
self.pad_names[ix] = "%s.%s" % (parent_name, s.values['name'])
elif entry_name == 'event':
# build a [ts, event-name] data file
ix = int(s.values['pad-ix'])
pad_file = self._get_data_file(self.ev_files, ix, '%s/ev_%d_%s.dat')
if pad_file:
# convert timestamps to seconds
x = int(s.values['ts']) / 1e9
l = s.values['name']
if l == self.ev_labels.get(ix):
# omit repeated labels for readability
pad_file.write('%f ""\n' % x)
else:
pad_file.write('%f "%s"\n' % (x, l))
self.ev_labels[ix] = l
else: # 'buffer'
if int(s.values['have-buffer-pts']):
# build a [ts, buffer-pts] data file
ix = int(s.values['pad-ix'])
pad_file = self._get_data_file(self.buf_files, ix, '%s/buf_%d_%s.dat')
if pad_file:
flags = int(s.values['buffer-flags'])
if flags & _GST_BUFFER_FLAG_DISCONT:
pad_file.write('\n')
# convert timestamps to e.g. seconds
x = int(s.values['ts']) / 1e9
y = int(s.values['buffer-pts']) / 1e9
pad_file.write('%f %f\n' % (x, y))
def report(self):
for ix, pad_file in self.ev_files.items():
pad_file.close()
script = _PLOT_SCRIPT_HEAD.substitute(self.params)
for ix, pad_file in self.buf_files.items():
pad_file.close()
name = self.pad_names[ix]
buf_file_name = '%s/buf_%d_%s.dat' % (self.outdir, ix, name)
ev_file_name = '%s/ev_%d_%s.dat' % (self.outdir, ix, name)
png_file_name = '%s/%d_%s.png' % (self.outdir, ix, name)
script += _PLOT_SCRIPT_BODY.substitute(self.params, pad_name=name,
buf_file_name=buf_file_name, ev_file_name=ev_file_name,
png_file_name=png_file_name)
# plot PNGs
p = Popen(['gnuplot'], stdout=DEVNULL, stdin=PIPE)
p.communicate(input=script.encode('utf-8'))
# cleanup
for ix, pad_file in self.buf_files.items():
name = self.pad_names[ix]
buf_file_name = '%s/buf_%d_%s.dat' % (self.outdir, ix, name)
os.unlink(buf_file_name)
for ix, pad_file in self.ev_files.items():
name = self.pad_names[ix]
ev_file_name = '%s/ev_%d_%s.dat' % (self.outdir, ix, name)
os.unlink(ev_file_name)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('file', nargs='?', default='debug.log')
parser.add_argument('outdir', nargs='?', default='tsplot')
parser.add_argument('-g', '--ghost-pads', action='store_true',
help='also plot data for ghost-pads')
parser.add_argument('-s', '--size', action='store', default='1600x300',
help='graph size as WxH')
args = parser.parse_args()
os.makedirs(args.outdir, exist_ok=True)
size = [int(s) for s in args.size.split('x')]
with Parser(args.file) as log:
tsplot = TsPlot(args.outdir, args.ghost_pads, size)
runner = AnalysisRunner(log)
runner.add_analyzer(tsplot)
runner.run()
tsplot.report()