mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2024-11-26 19:51:11 +00:00
Change M_PI to G_PI
This commit is contained in:
parent
d4167c4fee
commit
7b8981766b
13 changed files with 53 additions and 53 deletions
|
@ -229,7 +229,7 @@ generate_biquad_coefficients (GstAudioChebBand * filter,
|
|||
|
||||
/* Calculate pole location for lowpass at frequency 1 */
|
||||
{
|
||||
gdouble angle = (M_PI / 2.0) * (2.0 * p - 1) / np;
|
||||
gdouble angle = (G_PI / 2.0) * (2.0 * p - 1) / np;
|
||||
|
||||
rp = -sin (angle);
|
||||
ip = cos (angle);
|
||||
|
@ -266,7 +266,7 @@ generate_biquad_coefficients (GstAudioChebBand * filter,
|
|||
/* Calculate zero location for frequency 1 on the
|
||||
* unit circle for type 2 */
|
||||
if (type == 2) {
|
||||
gdouble angle = M_PI / (np * 2.0) + ((p - 1) * M_PI) / (np);
|
||||
gdouble angle = G_PI / (np * 2.0) + ((p - 1) * G_PI) / (np);
|
||||
gdouble mag2;
|
||||
|
||||
iz = cos (angle);
|
||||
|
@ -339,10 +339,10 @@ generate_biquad_coefficients (GstAudioChebBand * filter,
|
|||
gdouble a, b, d;
|
||||
gdouble alpha, beta;
|
||||
gdouble w0 =
|
||||
2.0 * M_PI * (filter->lower_frequency /
|
||||
2.0 * G_PI * (filter->lower_frequency /
|
||||
GST_AUDIO_FILTER (filter)->format.rate);
|
||||
gdouble w1 =
|
||||
2.0 * M_PI * (filter->upper_frequency /
|
||||
2.0 * G_PI * (filter->upper_frequency /
|
||||
GST_AUDIO_FILTER (filter)->format.rate);
|
||||
|
||||
if (filter->mode == MODE_BAND_PASS) {
|
||||
|
@ -498,10 +498,10 @@ generate_coefficients (GstAudioChebBand * filter)
|
|||
/* gain is H(wc), wc = center frequency */
|
||||
|
||||
gdouble w1 =
|
||||
2.0 * M_PI * (filter->lower_frequency /
|
||||
2.0 * G_PI * (filter->lower_frequency /
|
||||
GST_AUDIO_FILTER (filter)->format.rate);
|
||||
gdouble w2 =
|
||||
2.0 * M_PI * (filter->upper_frequency /
|
||||
2.0 * G_PI * (filter->upper_frequency /
|
||||
GST_AUDIO_FILTER (filter)->format.rate);
|
||||
gdouble w0 = (w2 + w1) / 2.0;
|
||||
gdouble zr = cos (w0), zi = sin (w0);
|
||||
|
@ -530,10 +530,10 @@ generate_coefficients (GstAudioChebBand * filter)
|
|||
np + 1, 1.0, 0.0)));
|
||||
{
|
||||
gdouble w1 =
|
||||
2.0 * M_PI * (filter->lower_frequency /
|
||||
2.0 * G_PI * (filter->lower_frequency /
|
||||
GST_AUDIO_FILTER (filter)->format.rate);
|
||||
gdouble w2 =
|
||||
2.0 * M_PI * (filter->upper_frequency /
|
||||
2.0 * G_PI * (filter->upper_frequency /
|
||||
GST_AUDIO_FILTER (filter)->format.rate);
|
||||
gdouble w0 = (w2 + w1) / 2.0;
|
||||
gdouble zr, zi;
|
||||
|
|
|
@ -222,7 +222,7 @@ generate_biquad_coefficients (GstAudioChebLimit * filter,
|
|||
|
||||
/* Calculate pole location for lowpass at frequency 1 */
|
||||
{
|
||||
gdouble angle = (M_PI / 2.0) * (2.0 * p - 1) / np;
|
||||
gdouble angle = (G_PI / 2.0) * (2.0 * p - 1) / np;
|
||||
|
||||
rp = -sin (angle);
|
||||
ip = cos (angle);
|
||||
|
@ -259,7 +259,7 @@ generate_biquad_coefficients (GstAudioChebLimit * filter,
|
|||
/* Calculate zero location for frequency 1 on the
|
||||
* unit circle for type 2 */
|
||||
if (type == 2) {
|
||||
gdouble angle = M_PI / (np * 2.0) + ((p - 1) * M_PI) / (np);
|
||||
gdouble angle = G_PI / (np * 2.0) + ((p - 1) * G_PI) / (np);
|
||||
gdouble mag2;
|
||||
|
||||
iz = cos (angle);
|
||||
|
@ -324,7 +324,7 @@ generate_biquad_coefficients (GstAudioChebLimit * filter,
|
|||
{
|
||||
gdouble k, d;
|
||||
gdouble omega =
|
||||
2.0 * M_PI * (filter->cutoff / GST_AUDIO_FILTER (filter)->format.rate);
|
||||
2.0 * G_PI * (filter->cutoff / GST_AUDIO_FILTER (filter)->format.rate);
|
||||
|
||||
if (filter->mode == MODE_LOW_PASS)
|
||||
k = sin ((1.0 - omega) / 2.0) / sin ((1.0 + omega) / 2.0);
|
||||
|
@ -456,7 +456,7 @@ generate_coefficients (GstAudioChebLimit * filter)
|
|||
#ifndef GST_DISABLE_GST_DEBUG
|
||||
{
|
||||
gdouble wc =
|
||||
2.0 * M_PI * (filter->cutoff /
|
||||
2.0 * G_PI * (filter->cutoff /
|
||||
GST_AUDIO_FILTER (filter)->format.rate);
|
||||
gdouble zr = cos (wc), zi = sin (wc);
|
||||
|
||||
|
|
|
@ -179,8 +179,8 @@ update_filter (GstAudioKaraoke * filter, gint rate)
|
|||
if (rate == 0)
|
||||
return;
|
||||
|
||||
C = exp (-2 * M_PI * filter->filter_width / rate);
|
||||
B = -4 * C / (1 + C) * cos (2 * M_PI * filter->filter_band / rate);
|
||||
C = exp (-2 * G_PI * filter->filter_width / rate);
|
||||
B = -4 * C / (1 + C) * cos (2 * G_PI * filter->filter_band / rate);
|
||||
A = sqrt (1 - B * B / (4 * C)) * (1 - C);
|
||||
|
||||
filter->A = A;
|
||||
|
|
|
@ -255,7 +255,7 @@ gst_audio_wsincband_build_kernel (GstAudioWSincBand * self)
|
|||
(self->mode == MODE_BAND_PASS) ? "band-pass" : "band-reject");
|
||||
|
||||
/* fill the lp kernel */
|
||||
w = 2 * M_PI * (self->lower_frequency / GST_AUDIO_FILTER (self)->format.rate);
|
||||
w = 2 * G_PI * (self->lower_frequency / GST_AUDIO_FILTER (self)->format.rate);
|
||||
kernel_lp = g_new (gdouble, len);
|
||||
for (i = 0; i < len; ++i) {
|
||||
if (i == len / 2)
|
||||
|
@ -265,11 +265,11 @@ gst_audio_wsincband_build_kernel (GstAudioWSincBand * self)
|
|||
/ (i - len / 2);
|
||||
/* Windowing */
|
||||
if (self->window == WINDOW_HAMMING)
|
||||
kernel_lp[i] *= (0.54 - 0.46 * cos (2 * M_PI * i / len));
|
||||
kernel_lp[i] *= (0.54 - 0.46 * cos (2 * G_PI * i / len));
|
||||
else
|
||||
kernel_lp[i] *=
|
||||
(0.42 - 0.5 * cos (2 * M_PI * i / len) +
|
||||
0.08 * cos (4 * M_PI * i / len));
|
||||
(0.42 - 0.5 * cos (2 * G_PI * i / len) +
|
||||
0.08 * cos (4 * G_PI * i / len));
|
||||
}
|
||||
|
||||
/* normalize for unity gain at DC */
|
||||
|
@ -280,7 +280,7 @@ gst_audio_wsincband_build_kernel (GstAudioWSincBand * self)
|
|||
kernel_lp[i] /= sum;
|
||||
|
||||
/* fill the hp kernel */
|
||||
w = 2 * M_PI * (self->upper_frequency / GST_AUDIO_FILTER (self)->format.rate);
|
||||
w = 2 * G_PI * (self->upper_frequency / GST_AUDIO_FILTER (self)->format.rate);
|
||||
kernel_hp = g_new (gdouble, len);
|
||||
for (i = 0; i < len; ++i) {
|
||||
if (i == len / 2)
|
||||
|
@ -290,11 +290,11 @@ gst_audio_wsincband_build_kernel (GstAudioWSincBand * self)
|
|||
/ (i - len / 2);
|
||||
/* Windowing */
|
||||
if (self->window == WINDOW_HAMMING)
|
||||
kernel_hp[i] *= (0.54 - 0.46 * cos (2 * M_PI * i / len));
|
||||
kernel_hp[i] *= (0.54 - 0.46 * cos (2 * G_PI * i / len));
|
||||
else
|
||||
kernel_hp[i] *=
|
||||
(0.42 - 0.5 * cos (2 * M_PI * i / len) +
|
||||
0.08 * cos (4 * M_PI * i / len));
|
||||
(0.42 - 0.5 * cos (2 * G_PI * i / len) +
|
||||
0.08 * cos (4 * G_PI * i / len));
|
||||
}
|
||||
|
||||
/* normalize for unity gain at DC */
|
||||
|
|
|
@ -239,7 +239,7 @@ gst_audio_wsinclimit_build_kernel (GstAudioWSincLimit * self)
|
|||
(self->mode == MODE_LOW_PASS) ? "low-pass" : "high-pass");
|
||||
|
||||
/* fill the kernel */
|
||||
w = 2 * M_PI * (self->cutoff / GST_AUDIO_FILTER (self)->format.rate);
|
||||
w = 2 * G_PI * (self->cutoff / GST_AUDIO_FILTER (self)->format.rate);
|
||||
|
||||
kernel = g_new (gdouble, len);
|
||||
|
||||
|
@ -250,10 +250,10 @@ gst_audio_wsinclimit_build_kernel (GstAudioWSincLimit * self)
|
|||
kernel[i] = sin (w * (i - len / 2)) / (i - len / 2);
|
||||
/* windowing */
|
||||
if (self->window == WINDOW_HAMMING)
|
||||
kernel[i] *= (0.54 - 0.46 * cos (2 * M_PI * i / len));
|
||||
kernel[i] *= (0.54 - 0.46 * cos (2 * G_PI * i / len));
|
||||
else
|
||||
kernel[i] *= (0.42 - 0.5 * cos (2 * M_PI * i / len) +
|
||||
0.08 * cos (4 * M_PI * i / len));
|
||||
kernel[i] *= (0.42 - 0.5 * cos (2 * G_PI * i / len) +
|
||||
0.08 * cos (4 * G_PI * i / len));
|
||||
}
|
||||
|
||||
/* normalize for unity gain at DC */
|
||||
|
|
|
@ -161,14 +161,14 @@ setOpmap (gint8 * opmap[4], gint width, gint height)
|
|||
#endif
|
||||
|
||||
opmap[OP_SPIRAL1][i] = ((guint)
|
||||
((at / M_PI * 256) + (r * 4000))) & 255;
|
||||
((at / G_PI * 256) + (r * 4000))) & 255;
|
||||
|
||||
j = r * 300 / 32;
|
||||
rr = r * 300 - j * 32;
|
||||
j *= 64;
|
||||
j += (rr > 28) ? (rr - 28) * 16 : 0;
|
||||
opmap[OP_SPIRAL2][i] = ((guint)
|
||||
((at / M_PI * 4096) + (r * 1600) - j)) & 255;
|
||||
((at / G_PI * 4096) + (r * 1600) - j)) & 255;
|
||||
|
||||
opmap[OP_PARABOLA][i] =
|
||||
((guint) (yy / (xx * xx * 0.3 + 0.1) * 400)) & 255;
|
||||
|
|
|
@ -441,11 +441,11 @@ calculate_omega (gdouble freq, gint rate)
|
|||
gdouble omega;
|
||||
|
||||
if (freq / rate >= 0.5)
|
||||
omega = M_PI;
|
||||
omega = G_PI;
|
||||
else if (freq <= 0.0)
|
||||
omega = 0.0;
|
||||
else
|
||||
omega = 2.0 * M_PI * (freq / rate);
|
||||
omega = 2.0 * G_PI * (freq / rate);
|
||||
|
||||
return omega;
|
||||
}
|
||||
|
@ -456,10 +456,10 @@ calculate_bw (GstIirEqualizerBand * band, gint rate)
|
|||
gdouble bw = 0.0;
|
||||
|
||||
if (band->width / rate >= 0.5) {
|
||||
/* If bandwidth == 0.5 the calculation below fails as tan(M_PI/2)
|
||||
/* If bandwidth == 0.5 the calculation below fails as tan(G_PI/2)
|
||||
* is undefined. So set the bandwidth to a slightly smaller value.
|
||||
*/
|
||||
bw = M_PI - 0.00000001;
|
||||
bw = G_PI - 0.00000001;
|
||||
} else if (band->width <= 0.0) {
|
||||
/* If bandwidth == 0 this band won't change anything so set
|
||||
* the coefficients accordingly. The coefficient calculation
|
||||
|
@ -472,7 +472,7 @@ calculate_bw (GstIirEqualizerBand * band, gint rate)
|
|||
band->b1 = 0.0;
|
||||
band->b2 = 0.0;
|
||||
} else {
|
||||
bw = 2.0 * M_PI * (band->width / rate);
|
||||
bw = 2.0 * G_PI * (band->width / rate);
|
||||
}
|
||||
return bw;
|
||||
}
|
||||
|
|
|
@ -76,7 +76,7 @@ compute_tables (VisualFX * _this, PluginInfo * info)
|
|||
data->h_height = info->screen.height;
|
||||
|
||||
for (i = 0; i < NB_THETA; i++) {
|
||||
radian = 2 * i * M_PI / NB_THETA;
|
||||
radian = 2 * i * G_PI / NB_THETA;
|
||||
h = (0.2 + cos (radian) / 15.0 * sin (radian * 2.0 + 12.123)) * screen_coef;
|
||||
data->h_cos[i] = 0x10000 * (-h * cos (radian) * cos (radian));
|
||||
data->h_sin[i] = 0x10000 * (h * sin (radian + 1.57) * sin (radian));
|
||||
|
|
|
@ -177,8 +177,8 @@ Random_Simis (PluginInfo * goomInfo, FRACTAL * F, SIMI * Cur, int i)
|
|||
Cur->c_y = Gauss_Rand (goomInfo, 0.0, .8, 4.0);
|
||||
Cur->r = Gauss_Rand (goomInfo, F->r_mean, F->dr_mean, 3.0);
|
||||
Cur->r2 = Half_Gauss_Rand (goomInfo, 0.0, F->dr2_mean, 2.0);
|
||||
Cur->A = Gauss_Rand (goomInfo, 0.0, 360.0, 4.0) * (M_PI / 180.0);
|
||||
Cur->A2 = Gauss_Rand (goomInfo, 0.0, 360.0, 4.0) * (M_PI / 180.0);
|
||||
Cur->A = Gauss_Rand (goomInfo, 0.0, 360.0, 4.0) * (G_PI / 180.0);
|
||||
Cur->A2 = Gauss_Rand (goomInfo, 0.0, 360.0, 4.0) * (G_PI / 180.0);
|
||||
Cur++;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -70,7 +70,7 @@ genline (int id, float param, GMUnitPointer * l, int rx, int ry)
|
|||
for (i = 0; i < 512; i++) {
|
||||
l[i].x = ((float) i * rx) / 512.0f;
|
||||
l[i].y = param;
|
||||
l[i].angle = M_PI / 2.0f;
|
||||
l[i].angle = G_PI / 2.0f;
|
||||
}
|
||||
return;
|
||||
case GML_VLINE:
|
||||
|
@ -84,7 +84,7 @@ genline (int id, float param, GMUnitPointer * l, int rx, int ry)
|
|||
for (i = 0; i < 512; i++) {
|
||||
float cosa, sina;
|
||||
|
||||
l[i].angle = 2.0f * M_PI * (float) i / 512.0f;
|
||||
l[i].angle = 2.0f * G_PI * (float) i / 512.0f;
|
||||
cosa = param * cos (l[i].angle);
|
||||
sina = param * sin (l[i].angle);
|
||||
l[i].x = ((float) rx / 2.0f) + cosa;
|
||||
|
|
|
@ -51,7 +51,7 @@ typedef struct _TENTACLE_FX_DATA
|
|||
/* statics from pretty_move */
|
||||
float distt;
|
||||
float distt2;
|
||||
float rot; /* entre 0 et 2 * M_PI */
|
||||
float rot; /* entre 0 et 2 * G_PI */
|
||||
int happens;
|
||||
int rotation;
|
||||
int lock;
|
||||
|
@ -85,7 +85,7 @@ tentacle_fx_init (VisualFX * _this, PluginInfo * info)
|
|||
|
||||
data->distt = 10.0f;
|
||||
data->distt2 = 0.0f;
|
||||
data->rot = 0.0f; /* entre 0 et 2 * M_PI */
|
||||
data->rot = 0.0f; /* entre 0 et 2 * G_PI */
|
||||
data->happens = 0;
|
||||
|
||||
data->rotation = 0;
|
||||
|
@ -253,27 +253,27 @@ pretty_move (PluginInfo * goomInfo, float cycle, float *dist, float *dist2,
|
|||
*dist = fx_data->distt = (tmp + 3.0f * fx_data->distt) / 4.0f;
|
||||
|
||||
if (!fx_data->happens) {
|
||||
tmp = M_PI * sin (cycle) / 32 + 3 * M_PI / 2;
|
||||
tmp = G_PI * sin (cycle) / 32 + 3 * G_PI / 2;
|
||||
} else {
|
||||
fx_data->rotation =
|
||||
goom_irand (goomInfo->gRandom,
|
||||
500) ? fx_data->rotation : goom_irand (goomInfo->gRandom, 2);
|
||||
if (fx_data->rotation)
|
||||
cycle *= 2.0f * M_PI;
|
||||
cycle *= 2.0f * G_PI;
|
||||
else
|
||||
cycle *= -1.0f * M_PI;
|
||||
tmp = cycle - (M_PI * 2.0) * floor (cycle / (M_PI * 2.0));
|
||||
cycle *= -1.0f * G_PI;
|
||||
tmp = cycle - (G_PI * 2.0) * floor (cycle / (G_PI * 2.0));
|
||||
}
|
||||
|
||||
if (abs (tmp - fx_data->rot) > abs (tmp - (fx_data->rot + 2.0 * M_PI))) {
|
||||
fx_data->rot = (tmp + 15.0f * (fx_data->rot + 2 * M_PI)) / 16.0f;
|
||||
if (fx_data->rot > 2.0 * M_PI)
|
||||
fx_data->rot -= 2.0 * M_PI;
|
||||
if (abs (tmp - fx_data->rot) > abs (tmp - (fx_data->rot + 2.0 * G_PI))) {
|
||||
fx_data->rot = (tmp + 15.0f * (fx_data->rot + 2 * G_PI)) / 16.0f;
|
||||
if (fx_data->rot > 2.0 * G_PI)
|
||||
fx_data->rot -= 2.0 * G_PI;
|
||||
*rotangle = fx_data->rot;
|
||||
} else if (abs (tmp - fx_data->rot) > abs (tmp - (fx_data->rot - 2.0 * M_PI))) {
|
||||
fx_data->rot = (tmp + 15.0f * (fx_data->rot - 2.0 * M_PI)) / 16.0f;
|
||||
} else if (abs (tmp - fx_data->rot) > abs (tmp - (fx_data->rot - 2.0 * G_PI))) {
|
||||
fx_data->rot = (tmp + 15.0f * (fx_data->rot - 2.0 * G_PI)) / 16.0f;
|
||||
if (fx_data->rot < 0.0f)
|
||||
fx_data->rot += 2.0 * M_PI;
|
||||
fx_data->rot += 2.0 * G_PI;
|
||||
*rotangle = fx_data->rot;
|
||||
} else
|
||||
*rotangle = fx_data->rot = (tmp + 15.0f * fx_data->rot) / 16.0f;
|
||||
|
|
|
@ -90,7 +90,7 @@ on_rate_changed (GstElement * element, gint rate, gpointer user_data)
|
|||
* a better result than given from the rectangular window
|
||||
*/
|
||||
for (i = 0; i < 32; i++)
|
||||
filter_kernel[i] *= (0.54 - 0.46 * cos (2 * M_PI * i / 32));
|
||||
filter_kernel[i] *= (0.54 - 0.46 * cos (2 * G_PI * i / 32));
|
||||
|
||||
va = g_value_array_new (1);
|
||||
|
||||
|
|
|
@ -63,7 +63,7 @@ on_rate_changed (GstElement * element, gint rate, gpointer user_data)
|
|||
gdouble x;
|
||||
|
||||
if (rate / 2.0 > CUTOFF)
|
||||
x = exp (-2.0 * M_PI * (CUTOFF / rate));
|
||||
x = exp (-2.0 * G_PI * (CUTOFF / rate));
|
||||
else
|
||||
x = 0.0;
|
||||
|
||||
|
|
Loading…
Reference in a new issue