docs: Extend documentation for the GStreamer development environment

Add more extensive documentation for the development environment.
Document how the tool works, how to use it and common use cases.

Part-of: <https://gitlab.freedesktop.org/gstreamer/gstreamer/-/merge_requests/1743>
This commit is contained in:
Sebastian Fricke 2022-02-18 10:47:47 +01:00 committed by GStreamer Marge Bot
parent 0b6bbce012
commit 5a421886b4
2 changed files with 123 additions and 4 deletions

View file

@ -234,6 +234,9 @@ An external script can be run in development environment with:
./gst-env.py external_script.sh
```
For more extensive documentation about the development environment go to [the
documentation](https://gstreamer.freedesktop.org/documentation/installing/building-from-source-using-meson.html).
## Custom subprojects
We also added a meson option, `custom_subprojects`, that allows the user

View file

@ -81,7 +81,7 @@ cd gst-build
The repository contains a few notable scripts and directories:
1. `meson.build` is the top-level build definition which will recursively
configure all dependencies. It also defines some helper commands allowing you
to have an uninstalled development environment or easily update git
to have a development environment or easily update git
repositories for the GStreamer modules.
2. `subprojects/` is the directory containing GStreamer modules and
a selection of dependencies.
@ -140,13 +140,129 @@ or the mono repository, and in future directly by `meson` itself) which will
setup environment variables accordingly so that you can use all the
build results directly.
``` shell
ninja -C <path/to/build_directory> devenv
```
For anyone familiar with python and virtualenv, you will feel right at home.
The script is called **`gst-env.py`**, it is located in the root of the
GStreamer mono-repository.
Another way to enter the virtual environment is to execute **`ninja -C
<path/to/build_directory> devenv`**. This option has less options and is
therefore not compatible with some workflows.
*NOTE*: you cannot use `meson` or reconfigure with `ninja` within the virtual
environment, therefore build before entering the environment or build from
another terminal/terminal-tab.
### How does it work?
Start a new shell session with a specific set of environment variables, that
tell GStreamer where to find plugins or libraries.
The most important options are:
+ **Shell context related variables**
* *PATH* - System path used to search for executable files, `gst-env` will
append folders containing executables from the build directory.
* *GST_PLUGIN_PATH* - List of paths to search for plugins (`.so`/`.dll`
files), `gst-env` will add all plugins found within the
`GstPluginsPath.json` file and from a few other locations.
* *GST_PLUGIN_SYSTEM_PATH* - When set this will make GStreamer check for
plugins in system wide paths, this is kept blank on purpose by `gst-env` to
avoid using plugins installed outside the environment.
* *GST_REGISTRY* - Use a custom file as plugin cache / registry. `gst-env`
utilizes the one found in the given build directory.
+ **Meson (build environment) related variables**
* *GST_VERSION* - Sets the build version in meson.
* *GST_ENV* - Makes sure that neither meson or ninja are run from within the
`gst-env`. Can be used to identify if the environment is active.
+ **Validation (test runners) related variables**
* *GST_VALIDATE_SCENARIOS_PATH* - List of paths to search for validation
scenario files (list of actions to be executed by the pipeline). By default
`gst-env` will use all scenarious found in the
`prefix/share/gstreamer-1.0/validate/scenarios` directory within the parent
directory of `gst-env.py`.
* *GST_VALIDATE_PLUGIN_PATH* - List of paths to search for plugin files to
add to the plugin registry. The default search path is in the given build
directory under `subprojects/gst-devtools/validate/plugins`.
The general idea is to set up the meson build directory, build the project and
the switch to the development environment with `gst-env`. This creates a
development environment in your shell, that provides a separate set of plugins
and tools.
To check if you are in the development environment run: `echo
$GST_ENV`, which will be set by `gst_env` to `gst-$GST_VERSION`.
You will notice the prompt changed accordingly. You can then run any GStreamer
tool you just built directly (like `gst-inspect-1.0`, `gst-launch-1.0`, ...).
### Options `gst-env`
+ **builddir**
- By default, the script will try to find the build directory within the
`build` or `builddir` directory within the same folder where
`gst-env.py` are located. This option allows to specify
a different location. This might be useful when you have multiple different
builds but you don't want to jump between folders.
+ **srcdir**
- The parent folder of `gst-env.py` is used by default.
This option is used to get the current branch of the repository, to fetch
GstValidate plugins and for gdb.
+ **sysroot**
- Useful if the project was cross-compiled on another machine and mounted via
a network file system/ssh file system/etc. Adjusts the paths (e.g. the
paths found in *GST_PLUGIN_PATH*) by removing the front part of the path
which matches *sysroot*.
<sub>For example if your rootfs is at /srv/rootfs, then the v4l2codecs plugin
might be built at
`/srv/rootfs/home/user/gstreamer/build/subprojects/gst-plugins-bad/sys/v4l2codecs`.
By executing `gst-env.py --sysroot /srv/rootfs` the path will be stored
within *GST_PLUGIN_PATH* as:
`/home/user/gstreamer/build/subprojects/gst-plugins-bad/sys/v4l2codecs`.</sub>
+ **wine**
- Extend the GST_VERSION environment variable with a specific wine command
+ **winepath**
- Add additional elements to the WINEPATH variable for wine environments.
+ **only-environment**
- Instead of opening a new shell environment, print the environment variables
that would be used.
### Use cases
#### Setting up a development environment while keeping the distribution package
This case is very simple all you have to do is either:
- `./gst-env.py` from the project root
- `ninja -C build devenv` (build is the generated meson build directory)
- `meson devenv` from the meson build directory (e.g. `build`) within the
project root
#### Using GStreamer as sub project to another project
This case is very similar to the previous, the only important deviation is that
the file system structure is important. **`gst-env`** will look for a
`GstPluginPaths.json` file either within the meson build directory (e.g.
`build`) or within `build/subprojects/gstreamer`.
#### Cross-compiling in combination with a network share
For cross compiling in general take a look at the [meson
documentation](https://mesonbuild.com/Cross-compilation.html) or at projects
like [gst-build-sdk](https://gitlab.collabora.com/collabora/gst-build-sdk).
The basic idea is to prepare a rootfs on the cross compile host, that is
similar to that of target machine, prepare a
[cross-file.txt](https://mesonbuild.com/Cross-compilation.html#defining-the-environment),
build the project and export it via a [NFS mount/NFS
rootfs](https://wiki.archlinux.org/title/NFS)/[SSHFS](https://wiki.archlinux.org/title/SSHFS)/[Syncthing](https://wiki.archlinux.org/title/Syncthing)
etc.
On the target machine you then have to remove the path to the rootfs on the
build machine from the GStreamer paths:
- `./gst-env.py --sysroot /path/to/rootfs-on-cross-compile-host`
## Working with multiple branches or remotes