mirror of
https://gitlab.freedesktop.org/gstreamer/gstreamer.git
synced 2025-01-10 17:35:59 +00:00
New audio resampling library, created from code in the audioscale plugin.
Original commit message from CVS: New audio resampling library, created from code in the audioscale plugin.
This commit is contained in:
parent
ae058adac2
commit
385e84596f
6 changed files with 1493 additions and 0 deletions
62
libs/resample/README
Normal file
62
libs/resample/README
Normal file
|
@ -0,0 +1,62 @@
|
|||
|
||||
This is a snapshot of my current work developing an audio
|
||||
resampling library. While working on this library, I started
|
||||
writing lots of general purpose functions that should really
|
||||
be part of a larger library. Rather than have a constantly
|
||||
changing library, and since the current code is capable, I
|
||||
decided to freeze this codebase for use with gstreamer, and
|
||||
move active development of the code elsewhere.
|
||||
|
||||
The algorithm used is based on Shannon's theorem, which says
|
||||
that you can recreate an input signal from equidistant samples
|
||||
using a sin(x)/x filter; thus, you can create new samples from
|
||||
the regenerated input signal. Since sin(x)/x is expensive to
|
||||
evaluate, an interpolated lookup table is used. Also, a
|
||||
windowing function (1-x^2)^2 is used, which aids the convergence
|
||||
of sin(x)/x for lower frequencies at the expense of higher.
|
||||
|
||||
There is one tunable parameter, which is the filter length.
|
||||
Longer filter lengths are obviously slower, but more accurate.
|
||||
There's not much reason to use a filter length longer than 64,
|
||||
since other approximations start to dominate. Filter lengths
|
||||
as short as 8 are audially acceptable, but should not be
|
||||
considered for serious work.
|
||||
|
||||
Performance: A PowerPC G4 at 400 Mhz can resample 2 audio
|
||||
channels at almost 10x speed with a filter length of 64, without
|
||||
using Altivec extensions. (My goal was 10x speed, which I almost
|
||||
reached. Maybe later.)
|
||||
|
||||
Limitations: Currently only supports streams in the form of
|
||||
interleaved signed 16-bit samples.
|
||||
|
||||
The test.c program is a simple regression test. It creates a
|
||||
test input pattern (1 sec at 48 khz) that is a frequency ramp
|
||||
from 0 to 24000 hz, and then converts it to 44100 hz using a
|
||||
filter length of 64. It then compares the result to the same
|
||||
pattern generated at 44100 hz, and outputs the result to the
|
||||
file "out".
|
||||
|
||||
A graph of the correct output should have field 2 and field 4
|
||||
almost equal (plus/minus 1) up to about sample 40000 (which
|
||||
corresponds to 20 khz), and then field 2 should be close to 0
|
||||
above that. Running the test program will print to stdout
|
||||
something like the following:
|
||||
|
||||
time 0.112526
|
||||
average error 10k=0.4105 22k=639.34
|
||||
|
||||
The average error is RMS error over the range [0-10khz] and
|
||||
[0-22khz], and is expressed in sample values, for an input
|
||||
amplitude of 16000. Note that RMS errors below 1.0 can't
|
||||
really be compared, but basically this shows that below
|
||||
10 khz, the resampler is nearly perfect. Most of the error
|
||||
is concentrated above 20 khz.
|
||||
|
||||
If the average error is significantly larger after modifying
|
||||
the code, it's probably not good.
|
||||
|
||||
|
||||
|
||||
dave...
|
||||
|
172
libs/resample/dtos.c
Normal file
172
libs/resample/dtos.c
Normal file
|
@ -0,0 +1,172 @@
|
|||
/* Resampling library
|
||||
* Copyright (C) <2001> David A. Schleef <ds@schleef.org>
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Library General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Library General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Library General Public
|
||||
* License along with this library; if not, write to the
|
||||
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||||
* Boston, MA 02111-1307, USA.
|
||||
*/
|
||||
|
||||
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
//#include <ml.h>
|
||||
#include <resample.h>
|
||||
|
||||
|
||||
|
||||
#define short_to_double_table
|
||||
#define short_to_double_altivec
|
||||
#define short_to_double_unroll
|
||||
|
||||
#ifdef short_to_double_table
|
||||
float ints_high[256];
|
||||
float ints_low[256];
|
||||
|
||||
void conv_double_short_table(double *dest, short *src, int n)
|
||||
{
|
||||
static int init = 0;
|
||||
int i;
|
||||
unsigned int idx;
|
||||
if(!init){
|
||||
for(i=0;i<256;i++){
|
||||
ints_high[i]=256.0*((i<128)?i:i-256);
|
||||
ints_low[i]=i;
|
||||
}
|
||||
init = 1;
|
||||
}
|
||||
|
||||
if(n&1){
|
||||
idx = (unsigned short)*src++;
|
||||
*dest++ = ints_high[(idx>>8)] + ints_low[(idx&0xff)];
|
||||
n-=1;
|
||||
}
|
||||
for(i=0;i<n;i+=2){
|
||||
idx = (unsigned short)*src++;
|
||||
*dest++ = ints_high[(idx>>8)] + ints_low[(idx&0xff)];
|
||||
idx = (unsigned short)*src++;
|
||||
*dest++ = ints_high[(idx>>8)] + ints_low[(idx&0xff)];
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef short_to_double_unroll
|
||||
void conv_double_short_unroll(double *dest, short *src, int n)
|
||||
{
|
||||
if(n&1){
|
||||
*dest++ = *src++;
|
||||
n--;
|
||||
}
|
||||
if(n&2){
|
||||
*dest++ = *src++;
|
||||
*dest++ = *src++;
|
||||
n-=2;
|
||||
}
|
||||
while(n>0){
|
||||
*dest++ = *src++;
|
||||
*dest++ = *src++;
|
||||
*dest++ = *src++;
|
||||
*dest++ = *src++;
|
||||
n-=4;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void conv_double_short_ref(double *dest, short *src, int n)
|
||||
{
|
||||
int i;
|
||||
for(i=0;i<n;i++){
|
||||
dest[i]=src[i];
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef short_to_double_altivec
|
||||
static union { int i[4]; float f[4]; } av_tmp __attribute__ ((__aligned__ (16)));
|
||||
|
||||
void conv_double_short_altivec(double *dest, short *src, int n)
|
||||
{
|
||||
int i;
|
||||
|
||||
for(i=0;i<n;i+=4){
|
||||
av_tmp.i[0] = src[0];
|
||||
av_tmp.i[1] = src[1];
|
||||
av_tmp.i[2] = src[2];
|
||||
av_tmp.i[3] = src[3];
|
||||
|
||||
asm(
|
||||
" lvx 0,0,%0\n"
|
||||
" vcfsx 1,0,0\n"
|
||||
" stvx 1,0,%0\n"
|
||||
: : "r" (&av_tmp)
|
||||
);
|
||||
|
||||
dest[0]=av_tmp.f[0];
|
||||
dest[1]=av_tmp.f[1];
|
||||
dest[2]=av_tmp.f[2];
|
||||
dest[3]=av_tmp.f[3];
|
||||
src += 4;
|
||||
dest += 4;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/* double to short */
|
||||
|
||||
void conv_short_double_ref(short *dest, double *src, int n)
|
||||
{
|
||||
int i;
|
||||
double x;
|
||||
|
||||
for(i=0;i<n;i++){
|
||||
x = *src++;
|
||||
if(x<-32768.0)x=-32768.0;
|
||||
if(x>32767.0)x=32767.0;
|
||||
*dest++ = rint(x);
|
||||
}
|
||||
}
|
||||
|
||||
void conv_short_double_ppcasm(short *dest, double *src, int n)
|
||||
{
|
||||
int tmp[2];
|
||||
double min = -32768.0;
|
||||
double max = 32767.0;
|
||||
double ftmp0, ftmp1;
|
||||
|
||||
asm __volatile__(
|
||||
"\taddic. %3,%3,-8\n"
|
||||
"\taddic. %6,%6,-2\n"
|
||||
"loop:\n"
|
||||
"\tlfdu %0,8(%3)\n"
|
||||
"\tfsub %1,%0,%4\n"
|
||||
"\tfsel %0,%1,%0,%4\n"
|
||||
"\tfsub %1,%0,%5\n"
|
||||
"\tfsel %0,%1,%5,%0\n"
|
||||
"\tfctiw %1,%0\n"
|
||||
"\taddic. 5,5,-1\n"
|
||||
"\tstfd %1,0(%2)\n"
|
||||
"\tlhz 9,6(%2)\n"
|
||||
"\tsthu 9,2(%6)\n"
|
||||
"\tbne loop\n"
|
||||
: "=&f" (ftmp0), "=&f" (ftmp1)
|
||||
: "b" (tmp), "r" (src), "f" (min), "f" (max), "r" (dest)
|
||||
: "r9", "r5" );
|
||||
|
||||
}
|
||||
|
||||
|
311
libs/resample/functable.c
Normal file
311
libs/resample/functable.c
Normal file
|
@ -0,0 +1,311 @@
|
|||
/* Resampling library
|
||||
* Copyright (C) <2001> David A. Schleef <ds@schleef.org>
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Library General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Library General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Library General Public
|
||||
* License along with this library; if not, write to the
|
||||
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||||
* Boston, MA 02111-1307, USA.
|
||||
*/
|
||||
|
||||
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <resample.h>
|
||||
|
||||
|
||||
|
||||
double functable_sinc(void *p,double x)
|
||||
{
|
||||
if(x==0)return 1;
|
||||
return sin(x)/x;
|
||||
}
|
||||
|
||||
double functable_dsinc(void *p,double x)
|
||||
{
|
||||
if(x==0)return 0;
|
||||
return cos(x)/x - sin(x)/(x*x);
|
||||
}
|
||||
|
||||
double functable_window_boxcar(void *p,double x)
|
||||
{
|
||||
if(x<-1 || x>1)return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
double functable_window_dboxcar(void *p,double x)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
double functable_window_std(void *p,double x)
|
||||
{
|
||||
if(x<-1 || x>1)return 0;
|
||||
return (1-x*x)*(1-x*x);
|
||||
}
|
||||
|
||||
double functable_window_dstd(void *p,double x)
|
||||
{
|
||||
if(x<-1 || x>1)return 0;
|
||||
return -4*x*(1-x*x);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void functable_init(functable_t *t)
|
||||
{
|
||||
int i;
|
||||
double x;
|
||||
|
||||
t->fx = malloc(sizeof(double)*(t->len+1));
|
||||
t->fdx = malloc(sizeof(double)*(t->len+1));
|
||||
|
||||
t->invoffset = 1.0 / t->offset;
|
||||
|
||||
for(i=0;i<t->len+1;i++){
|
||||
x = t->start + t->offset * i;
|
||||
x *= t->scale;
|
||||
|
||||
t->fx[i] = t->func_x(t->priv,x);
|
||||
t->fdx[i] = t->scale * t->func_dx(t->priv,x);
|
||||
}
|
||||
if(t->func2_x){
|
||||
double f1x,f1dx;
|
||||
double f2x,f2dx;
|
||||
|
||||
for(i=0;i<t->len+1;i++){
|
||||
x = t->start + t->offset * i;
|
||||
x *= t->scale2;
|
||||
|
||||
f2x = t->func2_x(t->priv,x);
|
||||
f2dx = t->scale2 * t->func2_dx(t->priv,x);
|
||||
|
||||
f1x = t->fx[i];
|
||||
f1dx = t->fdx[i];
|
||||
|
||||
t->fx[i] = f1x * f2x;
|
||||
t->fdx[i] = f1x * f2dx + f1dx * f2x;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double functable_eval(functable_t *t,double x)
|
||||
{
|
||||
int i;
|
||||
double f0, f1, w0, w1;
|
||||
double x2, x3;
|
||||
double w;
|
||||
|
||||
if(x<t->start || x>(t->start+(t->len+1)*t->offset)){
|
||||
printf("x out of range %g\n",x);
|
||||
}
|
||||
x -= t->start;
|
||||
x /= t->offset;
|
||||
i = floor(x);
|
||||
x -= i;
|
||||
|
||||
x2 = x * x;
|
||||
x3 = x2 * x;
|
||||
|
||||
f1 = 3 * x2 - 2 * x3;
|
||||
f0 = 1 - f1;
|
||||
w0 = (x - 2 * x2 + x3) * t->offset;
|
||||
w1 = (-x2 + x3) * t->offset;
|
||||
|
||||
//printf("i=%d x=%g f0=%g f1=%g w0=%g w1=%g\n",i,x,f0,f1,w0,w1);
|
||||
|
||||
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||||
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||||
|
||||
//w = t->fx[i] * (1-x) + t->fx[i+1] * x;
|
||||
|
||||
return w;
|
||||
}
|
||||
|
||||
|
||||
double functable_fir(functable_t *t, double x, int n, double *data, int len)
|
||||
{
|
||||
int i,j;
|
||||
double f0, f1, w0, w1;
|
||||
double x2, x3;
|
||||
double w;
|
||||
double sum;
|
||||
|
||||
x -= t->start;
|
||||
x /= t->offset;
|
||||
i = floor(x);
|
||||
x -= i;
|
||||
|
||||
x2 = x * x;
|
||||
x3 = x2 * x;
|
||||
|
||||
f1 = 3 * x2 - 2 * x3;
|
||||
f0 = 1 - f1;
|
||||
w0 = (x - 2 * x2 + x3) * t->offset;
|
||||
w1 = (-x2 + x3) * t->offset;
|
||||
|
||||
sum = 0;
|
||||
for(j=0;j<len;j++){
|
||||
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||||
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||||
sum += data[j*2] * w;
|
||||
i += n;
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
void functable_fir2(functable_t *t, double *r0, double *r1, double x,
|
||||
int n, double *data, int len)
|
||||
{
|
||||
int i,j;
|
||||
double f0, f1, w0, w1;
|
||||
double x2, x3;
|
||||
double w;
|
||||
double sum0, sum1;
|
||||
double floor_x;
|
||||
|
||||
x -= t->start;
|
||||
x *= t->invoffset;
|
||||
floor_x = floor(x);
|
||||
i = floor_x;
|
||||
x -= floor_x;
|
||||
|
||||
x2 = x * x;
|
||||
x3 = x2 * x;
|
||||
|
||||
f1 = 3 * x2 - 2 * x3;
|
||||
f0 = 1 - f1;
|
||||
w0 = (x - 2 * x2 + x3) * t->offset;
|
||||
w1 = (-x2 + x3) * t->offset;
|
||||
|
||||
sum0 = 0;
|
||||
sum1 = 0;
|
||||
for(j=0;j<len;j++){
|
||||
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||||
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||||
sum0 += data[j*2] * w;
|
||||
sum1 += data[j*2+1] * w;
|
||||
i += n;
|
||||
|
||||
#define unroll2
|
||||
#define unroll3
|
||||
#define unroll4
|
||||
#ifdef unroll2
|
||||
j++;
|
||||
|
||||
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||||
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||||
sum0 += data[j*2] * w;
|
||||
sum1 += data[j*2+1] * w;
|
||||
i += n;
|
||||
#endif
|
||||
#ifdef unroll3
|
||||
j++;
|
||||
|
||||
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||||
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||||
sum0 += data[j*2] * w;
|
||||
sum1 += data[j*2+1] * w;
|
||||
i += n;
|
||||
#endif
|
||||
#ifdef unroll4
|
||||
j++;
|
||||
|
||||
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||||
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||||
sum0 += data[j*2] * w;
|
||||
sum1 += data[j*2+1] * w;
|
||||
i += n;
|
||||
#endif
|
||||
}
|
||||
|
||||
*r0 = sum0;
|
||||
*r1 = sum1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef unused
|
||||
void functable_fir2_altivec(functable_t *t, float *r0, float *r1,
|
||||
double x, int n, float *data, int len)
|
||||
{
|
||||
int i,j;
|
||||
double f0, f1, w0, w1;
|
||||
double x2, x3;
|
||||
double w;
|
||||
double sum0, sum1;
|
||||
double floor_x;
|
||||
|
||||
x -= t->start;
|
||||
x *= t->invoffset;
|
||||
floor_x = floor(x);
|
||||
i = floor_x;
|
||||
x -= floor_x;
|
||||
|
||||
x2 = x * x;
|
||||
x3 = x2 * x;
|
||||
|
||||
f1 = 3 * x2 - 2 * x3;
|
||||
f0 = 1 - f1;
|
||||
w0 = (x - 2 * x2 + x3) * t->offset;
|
||||
w1 = (-x2 + x3) * t->offset;
|
||||
|
||||
sum0 = 0;
|
||||
sum1 = 0;
|
||||
for(j=0;j<len;j++){
|
||||
// t->fx, t->fdx needs to be multiplexed by n
|
||||
// we need 5 consecutive floats, which fit into 2 vecs
|
||||
// load v0, t->fx[i]
|
||||
// load v1, t->fx[i+n]
|
||||
// v2 = v0 (not correct)
|
||||
// v3 = (v0>>32) || (v1<<3*32) (not correct)
|
||||
//
|
||||
// load v4, t->dfx[i]
|
||||
// load v5, t->dfx[i+n]
|
||||
// v6 = v4 (not correct)
|
||||
// v7 = (v4>>32) || (v5<<3*32) (not correct)
|
||||
//
|
||||
// v8 = splat(f0)
|
||||
// v9 = splat(f1)
|
||||
// v10 = splat(w0)
|
||||
// v11 = splat(w1)
|
||||
//
|
||||
// v12 = v2 * v8
|
||||
// v12 += v3 * v9
|
||||
// v12 += v6 * v10
|
||||
// v12 += v7 * v11
|
||||
|
||||
w = t->fx[i] * f0 + t->fx[i + 1] * f1 +
|
||||
t->fdx[i] * w0 + t->fdx[i + 1] * w1;
|
||||
|
||||
// v13 = data[j*2]
|
||||
// v14 = data[j*2+4]
|
||||
// v15 = deinterlace_high(v13,v14)
|
||||
// v16 = deinterlace_low(v13,v14)
|
||||
// (sum0) v17 += multsum(v13,v15)
|
||||
// (sum1) v18 += multsum(v14,v16)
|
||||
|
||||
sum0 += data[j*2] * w;
|
||||
sum1 += data[j*2+1] * w;
|
||||
i += n;
|
||||
|
||||
}
|
||||
|
||||
*r0 = sum0;
|
||||
*r1 = sum1;
|
||||
}
|
||||
#endif
|
||||
|
523
libs/resample/resample.c
Normal file
523
libs/resample/resample.c
Normal file
|
@ -0,0 +1,523 @@
|
|||
/* Resampling library
|
||||
* Copyright (C) <2001> David A. Schleef <ds@schleef.org>
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Library General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Library General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Library General Public
|
||||
* License along with this library; if not, write to the
|
||||
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||||
* Boston, MA 02111-1307, USA.
|
||||
*/
|
||||
|
||||
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <resample.h>
|
||||
|
||||
inline double sinc(double x)
|
||||
{
|
||||
if(x==0)return 1;
|
||||
return sin(x) / x;
|
||||
}
|
||||
|
||||
inline double window_func(double x)
|
||||
{
|
||||
x = 1 - x*x;
|
||||
return x*x;
|
||||
}
|
||||
|
||||
signed short double_to_s16(double x)
|
||||
{
|
||||
if(x<-32768){
|
||||
printf("clipped\n");
|
||||
return -32768;
|
||||
}
|
||||
if(x>32767){
|
||||
printf("clipped\n");
|
||||
return -32767;
|
||||
}
|
||||
return rint(x);
|
||||
}
|
||||
|
||||
signed short double_to_s16_ppcasm(double x)
|
||||
{
|
||||
if(x<-32768){
|
||||
return -32768;
|
||||
}
|
||||
if(x>32767){
|
||||
return -32767;
|
||||
}
|
||||
return rint(x);
|
||||
}
|
||||
|
||||
static void resample_sinc_ft(resample_t * r);
|
||||
|
||||
void resample_init(resample_t * r)
|
||||
{
|
||||
r->i_start = 0;
|
||||
if(r->filter_length&1){
|
||||
r->o_start = 0;
|
||||
}else{
|
||||
r->o_start = r->o_inc * 0.5;
|
||||
}
|
||||
|
||||
memset(r->acc, 0, sizeof(r->acc));
|
||||
|
||||
resample_reinit(r);
|
||||
}
|
||||
|
||||
void resample_reinit(resample_t * r)
|
||||
{
|
||||
/* i_inc is the number of samples that the output increments for
|
||||
* each input sample. o_inc is the opposite. */
|
||||
r->i_inc = (double) r->o_rate / r->i_rate;
|
||||
r->o_inc = (double) r->i_rate / r->o_rate;
|
||||
|
||||
r->halftaps = (r->filter_length - 1.0) * 0.5;
|
||||
|
||||
switch (r->method) {
|
||||
default:
|
||||
case RESAMPLE_NEAREST:
|
||||
r->scale = resample_nearest;
|
||||
break;
|
||||
case RESAMPLE_BILINEAR:
|
||||
r->scale = resample_bilinear;
|
||||
break;
|
||||
case RESAMPLE_SINC_SLOW:
|
||||
r->scale = resample_sinc;
|
||||
break;
|
||||
case RESAMPLE_SINC:
|
||||
r->scale = resample_sinc_ft;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Prepare to be confused.
|
||||
*
|
||||
* We keep a "timebase" that is based on output samples. The zero
|
||||
* of the timebase cooresponds to the next output sample that will
|
||||
* be written.
|
||||
*
|
||||
* i_start is the "time" that corresponds to the first input sample
|
||||
* in an incoming buffer. Since the output depends on input samples
|
||||
* ahead in time, i_start will tend to be around halftaps.
|
||||
*
|
||||
* i_start_buf is the time of the first sample in the temporary
|
||||
* buffer.
|
||||
*/
|
||||
void resample_scale(resample_t * r, void *i_buf, unsigned int i_size)
|
||||
{
|
||||
int o_size;
|
||||
|
||||
r->i_buf = i_buf;
|
||||
|
||||
r->i_samples = i_size / 2 / r->channels;
|
||||
|
||||
r->i_start_buf = r->i_start - r->filter_length * r->i_inc;
|
||||
|
||||
/* i_start is the offset (in a given output sample) that is the
|
||||
* beginning of the current input buffer */
|
||||
r->i_end = r->i_start + r->i_inc * r->i_samples;
|
||||
|
||||
r->o_samples = floor(r->i_end - r->halftaps * r->i_inc);
|
||||
|
||||
o_size = r->o_samples * r->channels * 2;
|
||||
r->o_buf = r->get_buffer(r->priv, o_size);
|
||||
|
||||
if(r->verbose){
|
||||
printf("resample_scale: i_buf=%p i_size=%d\n",
|
||||
i_buf,i_size);
|
||||
printf("resample_scale: i_samples=%d o_samples=%d i_inc=%g o_buf=%p\n",
|
||||
r->i_samples, r->o_samples, r->i_inc, r->o_buf);
|
||||
printf("resample_scale: i_start=%g i_end=%g o_start=%g\n",
|
||||
r->i_start, r->i_end, r->o_start);
|
||||
}
|
||||
|
||||
if ((r->filter_length + r->i_samples)*2*r->channels > r->buffer_len) {
|
||||
//int size = taps * 2 * r->channels;
|
||||
int size = (r->filter_length + r->i_samples) * sizeof(double) * r->channels;
|
||||
|
||||
if(r->verbose){
|
||||
printf("resample temp buffer size=%d\n",size);
|
||||
}
|
||||
if(r->buffer)free(r->buffer);
|
||||
r->buffer_len = size;
|
||||
r->buffer = malloc(size);
|
||||
memset(r->buffer, 0, size);
|
||||
}
|
||||
|
||||
conv_double_short(
|
||||
r->buffer + r->filter_length * sizeof(double) * r->channels,
|
||||
r->i_buf, r->i_samples * r->channels);
|
||||
|
||||
r->scale(r);
|
||||
|
||||
memcpy(r->buffer,
|
||||
r->buffer + r->i_samples * sizeof(double) * r->channels,
|
||||
r->filter_length * sizeof(double) * r->channels);
|
||||
|
||||
/* updating times */
|
||||
r->i_start += r->i_samples * r->i_inc;
|
||||
r->o_start += r->o_samples * r->o_inc - r->i_samples;
|
||||
|
||||
/* adjusting timebase zero */
|
||||
r->i_start -= r->o_samples;
|
||||
}
|
||||
|
||||
void resample_nearest(resample_t * r)
|
||||
{
|
||||
signed short *i_ptr, *o_ptr;
|
||||
int i_count = 0;
|
||||
double a;
|
||||
int i;
|
||||
|
||||
i_ptr = (signed short *) r->i_buf;
|
||||
o_ptr = (signed short *) r->o_buf;
|
||||
|
||||
a = r->o_start;
|
||||
i_count = 0;
|
||||
#define SCALE_LOOP(COPY,INC) \
|
||||
for (i = 0; i < r->o_samples; i++) { \
|
||||
COPY; \
|
||||
a += r->o_inc; \
|
||||
while (a >= 1) { \
|
||||
a -= 1; \
|
||||
i_ptr+=INC; \
|
||||
i_count++; \
|
||||
} \
|
||||
o_ptr+=INC; \
|
||||
}
|
||||
|
||||
switch (r->channels) {
|
||||
case 1:
|
||||
SCALE_LOOP(o_ptr[0] = i_ptr[0], 1);
|
||||
break;
|
||||
case 2:
|
||||
SCALE_LOOP(o_ptr[0] = i_ptr[0];
|
||||
o_ptr[1] = i_ptr[1], 2);
|
||||
break;
|
||||
default:
|
||||
{
|
||||
int n, n_chan = r->channels;
|
||||
|
||||
SCALE_LOOP(for (n = 0; n < n_chan; n++) o_ptr[n] =
|
||||
i_ptr[n], n_chan);
|
||||
}
|
||||
}
|
||||
if (i_count != r->i_samples) {
|
||||
printf("handled %d in samples (expected %d)\n", i_count,
|
||||
r->i_samples);
|
||||
}
|
||||
}
|
||||
|
||||
void resample_bilinear(resample_t * r)
|
||||
{
|
||||
signed short *i_ptr, *o_ptr;
|
||||
int o_count = 0;
|
||||
double b;
|
||||
int i;
|
||||
double acc0, acc1;
|
||||
|
||||
i_ptr = (signed short *) r->i_buf;
|
||||
o_ptr = (signed short *) r->o_buf;
|
||||
|
||||
acc0 = r->acc[0];
|
||||
acc1 = r->acc[1];
|
||||
b = r->i_start;
|
||||
for (i = 0; i < r->i_samples; i++) {
|
||||
b += r->i_inc;
|
||||
//printf("in %d\n",i_ptr[0]);
|
||||
if(b>=2){
|
||||
printf("not expecting b>=2\n");
|
||||
}
|
||||
if (b >= 1) {
|
||||
acc0 += (1.0 - (b-r->i_inc)) * i_ptr[0];
|
||||
acc1 += (1.0 - (b-r->i_inc)) * i_ptr[1];
|
||||
|
||||
o_ptr[0] = rint(acc0);
|
||||
//printf("out %d\n",o_ptr[0]);
|
||||
o_ptr[1] = rint(acc1);
|
||||
o_ptr += 2;
|
||||
o_count++;
|
||||
|
||||
b -= 1.0;
|
||||
|
||||
acc0 = b * i_ptr[0];
|
||||
acc1 = b * i_ptr[1];
|
||||
} else {
|
||||
acc0 += i_ptr[0] * r->i_inc;
|
||||
acc1 += i_ptr[1] * r->i_inc;
|
||||
}
|
||||
i_ptr += 2;
|
||||
}
|
||||
r->acc[0] = acc0;
|
||||
r->acc[1] = acc1;
|
||||
|
||||
if (o_count != r->o_samples) {
|
||||
printf("handled %d out samples (expected %d)\n", o_count,
|
||||
r->o_samples);
|
||||
}
|
||||
}
|
||||
|
||||
void resample_sinc_slow(resample_t * r)
|
||||
{
|
||||
signed short *i_ptr, *o_ptr;
|
||||
int i, j;
|
||||
double c0, c1;
|
||||
double a;
|
||||
int start;
|
||||
double center;
|
||||
double weight;
|
||||
|
||||
if (!r->buffer) {
|
||||
int size = r->filter_length * 2 * r->channels;
|
||||
|
||||
printf("resample temp buffer\n");
|
||||
r->buffer = malloc(size);
|
||||
memset(r->buffer, 0, size);
|
||||
}
|
||||
|
||||
i_ptr = (signed short *) r->i_buf;
|
||||
o_ptr = (signed short *) r->o_buf;
|
||||
|
||||
a = r->i_start;
|
||||
#define GETBUF(index,chan) (((index)<0) \
|
||||
? ((short *)(r->buffer))[((index)+r->filter_length)*2+(chan)] \
|
||||
: i_ptr[(index)*2+(chan)])
|
||||
{
|
||||
double sinx, cosx, sind, cosd;
|
||||
double x, d;
|
||||
double t;
|
||||
|
||||
for (i = 0; i < r->o_samples; i++) {
|
||||
start = floor(a) - r->filter_length;
|
||||
center = a - r->halftaps;
|
||||
x = M_PI * (start - center) * r->o_inc;
|
||||
sinx = sin(M_PI * (start - center) * r->o_inc);
|
||||
cosx = cos(M_PI * (start - center) * r->o_inc);
|
||||
d = M_PI * r->o_inc;
|
||||
sind = sin(M_PI * r->o_inc);
|
||||
cosd = cos(M_PI * r->o_inc);
|
||||
c0 = 0;
|
||||
c1 = 0;
|
||||
for (j = 0; j < r->filter_length; j++) {
|
||||
weight = (x==0)?1:(sinx/x);
|
||||
//printf("j %d sin %g cos %g\n",j,sinx,cosx);
|
||||
//printf("j %d sin %g x %g sinc %g\n",j,sinx,x,weight);
|
||||
c0 += weight * GETBUF((start + j), 0);
|
||||
c1 += weight * GETBUF((start + j), 1);
|
||||
t = cosx * cosd - sinx * sind;
|
||||
sinx = cosx * sind + sinx * cosd;
|
||||
cosx = t;
|
||||
x += d;
|
||||
}
|
||||
o_ptr[0] = rint(c0);
|
||||
o_ptr[1] = rint(c1);
|
||||
o_ptr += 2;
|
||||
a += r->o_inc;
|
||||
}
|
||||
}
|
||||
|
||||
memcpy(r->buffer,
|
||||
i_ptr + (r->i_samples - r->filter_length) * r->channels,
|
||||
r->filter_length * 2 * r->channels);
|
||||
}
|
||||
|
||||
void resample_sinc(resample_t * r)
|
||||
{
|
||||
double *ptr;
|
||||
signed short *o_ptr;
|
||||
int i, j;
|
||||
double c0, c1;
|
||||
double a;
|
||||
int start;
|
||||
double center;
|
||||
double weight;
|
||||
double x0, x, d;
|
||||
double scale;
|
||||
|
||||
ptr = (double *) r->buffer;
|
||||
o_ptr = (signed short *) r->o_buf;
|
||||
|
||||
/* scale provides a cutoff frequency for the low
|
||||
* pass filter aspects of sinc(). scale=M_PI
|
||||
* will cut off at the input frequency, which is
|
||||
* good for up-sampling, but will cause aliasing
|
||||
* for downsampling. Downsampling needs to be
|
||||
* cut off at o_rate, thus scale=M_PI*r->i_inc. */
|
||||
/* actually, it needs to be M_PI*r->i_inc*r->i_inc.
|
||||
* Need to research why. */
|
||||
scale = M_PI*r->i_inc;
|
||||
for (i = 0; i < r->o_samples; i++) {
|
||||
a = r->o_start + i * r->o_inc;
|
||||
start = floor(a - r->halftaps);
|
||||
//printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1);
|
||||
center = a;
|
||||
//x = M_PI * (start - center) * r->o_inc;
|
||||
//d = M_PI * r->o_inc;
|
||||
//x = (start - center) * r->o_inc;
|
||||
x0 = (start - center) * r->o_inc;
|
||||
d = r->o_inc;
|
||||
c0 = 0;
|
||||
c1 = 0;
|
||||
for (j = 0; j < r->filter_length; j++) {
|
||||
x = x0 + d * j;
|
||||
weight = sinc(x*scale*r->i_inc)*scale/M_PI;
|
||||
weight *= window_func(x/r->halftaps*r->i_inc);
|
||||
c0 += weight * ptr[(start + j + r->filter_length)*2 + 0];
|
||||
c1 += weight * ptr[(start + j + r->filter_length)*2 + 1];
|
||||
}
|
||||
o_ptr[0] = double_to_s16(c0);
|
||||
o_ptr[1] = double_to_s16(c1);
|
||||
o_ptr += 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* Resampling audio is best done using a sinc() filter.
|
||||
*
|
||||
*
|
||||
* out[t] = Sum( in[t'] * sinc((t-t')/delta_t), all t')
|
||||
*
|
||||
* The immediate problem with this algorithm is that it involves a
|
||||
* sum over an infinite number of input samples, both in the past
|
||||
* and future. Note that even though sinc(x) is bounded by 1/x,
|
||||
* and thus decays to 0 for large x, since sum(x,{x=0,1..,n}) diverges
|
||||
* as log(n), we need to be careful about convergence. This is
|
||||
* typically done by using a windowing function, which also makes
|
||||
* the sum over a finite number of input samples.
|
||||
*
|
||||
* The next problem is computational: sinc(), and especially
|
||||
* sinc() multiplied by a non-trivial windowing function is expensive
|
||||
* to calculate, and also difficult to find SIMD optimizations. Since
|
||||
* the time increment on input and output is different, it is not
|
||||
* possible to use a FIR filter, because the taps would have to be
|
||||
* recalculated for every t.
|
||||
*
|
||||
* To get around the expense of calculating sinc() for every point,
|
||||
* we pre-calculate sinc() at a number of points, and then interpolate
|
||||
* for the values we want in calculations. The interpolation method
|
||||
* chosen is bi-cubic, which requires both the evalated function and
|
||||
* its derivative at every pre-sampled point. Also, if the sampled
|
||||
* points are spaced commensurate with the input delta_t, we notice
|
||||
* that the interpolating weights are the same for every input point.
|
||||
* This decreases the number of operations to 4 multiplies and 4 adds
|
||||
* for each tap, regardless of the complexity of the filtering function.
|
||||
*
|
||||
* At this point, it is possible to rearrange the problem as the sum
|
||||
* of 4 properly weghted FIR filters. Typical SIMD computation units
|
||||
* are highly optimized for FIR filters, making long filter lengths
|
||||
* reasonable.
|
||||
*/
|
||||
|
||||
static functable_t *ft;
|
||||
|
||||
double out_tmp[10000];
|
||||
|
||||
static void resample_sinc_ft(resample_t * r)
|
||||
{
|
||||
double *ptr;
|
||||
signed short *o_ptr;
|
||||
int i;
|
||||
//int j;
|
||||
double c0, c1;
|
||||
//double a;
|
||||
double start_f, start_x;
|
||||
int start;
|
||||
double center;
|
||||
//double weight;
|
||||
double x, d;
|
||||
double scale;
|
||||
int n = 4;
|
||||
|
||||
scale = r->i_inc; // cutoff at 22050
|
||||
//scale = 1.0; // cutoff at 24000
|
||||
//scale = r->i_inc * 0.5; // cutoff at 11025
|
||||
|
||||
if(!ft){
|
||||
ft = malloc(sizeof(*ft));
|
||||
memset(ft,0,sizeof(*ft));
|
||||
|
||||
ft->len = (r->filter_length + 2) * n;
|
||||
ft->offset = 1.0 / n;
|
||||
ft->start = - ft->len * 0.5 * ft->offset;
|
||||
|
||||
ft->func_x = functable_sinc;
|
||||
ft->func_dx = functable_dsinc;
|
||||
ft->scale = M_PI * scale;
|
||||
|
||||
ft->func2_x = functable_window_std;
|
||||
ft->func2_dx = functable_window_dstd;
|
||||
ft->scale2 = 1.0 / r->halftaps;
|
||||
|
||||
functable_init(ft);
|
||||
|
||||
//printf("len=%d offset=%g start=%g\n",ft->len,ft->offset,ft->start);
|
||||
}
|
||||
|
||||
ptr = r->buffer;
|
||||
o_ptr = (signed short *) r->o_buf;
|
||||
|
||||
center = r->o_start;
|
||||
start_x = center - r->halftaps;
|
||||
start_f = floor(start_x);
|
||||
start_x -= start_f;
|
||||
start = start_f;
|
||||
for (i = 0; i < r->o_samples; i++) {
|
||||
//start_f = floor(center - r->halftaps);
|
||||
//printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1);
|
||||
x = start_f - center;
|
||||
d = 1;
|
||||
c0 = 0;
|
||||
c1 = 0;
|
||||
//#define slow
|
||||
#ifdef slow
|
||||
for (j = 0; j < r->filter_length; j++) {
|
||||
weight = functable_eval(ft,x)*scale;
|
||||
//weight = sinc(M_PI * scale * x)*scale*r->i_inc;
|
||||
//weight *= window_func(x / r->halftaps);
|
||||
c0 += weight * ptr[(start + j + r->filter_length)*2 + 0];
|
||||
c1 += weight * ptr[(start + j + r->filter_length)*2 + 1];
|
||||
x += d;
|
||||
}
|
||||
#else
|
||||
functable_fir2(ft,
|
||||
&c0,&c1,
|
||||
x, n,
|
||||
ptr+(start + r->filter_length)*2,
|
||||
r->filter_length);
|
||||
c0 *= scale;
|
||||
c1 *= scale;
|
||||
#endif
|
||||
|
||||
out_tmp[2 * i + 0] = c0;
|
||||
out_tmp[2 * i + 1] = c1;
|
||||
center += r->o_inc;
|
||||
start_x += r->o_inc;
|
||||
while(start_x>=1.0){
|
||||
start_f++;
|
||||
start_x -= 1.0;
|
||||
start++;
|
||||
}
|
||||
}
|
||||
|
||||
conv_short_double(r->o_buf,out_tmp,2 * r->o_samples);
|
||||
//o_ptr[0] = double_to_s16(c0);
|
||||
//o_ptr[1] = double_to_s16(c1);
|
||||
}
|
||||
|
145
libs/resample/resample.h
Normal file
145
libs/resample/resample.h
Normal file
|
@ -0,0 +1,145 @@
|
|||
/* Resampling library
|
||||
* Copyright (C) <2001> David Schleef <ds@schleef.org>
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Library General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Library General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Library General Public
|
||||
* License along with this library; if not, write to the
|
||||
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||||
* Boston, MA 02111-1307, USA.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef __RESAMPLE_H__
|
||||
#define __RESAMPLE_H__
|
||||
|
||||
typedef struct resample_s resample_t;
|
||||
|
||||
struct resample_s {
|
||||
/* parameters */
|
||||
|
||||
int method;
|
||||
int channels;
|
||||
int verbose;
|
||||
|
||||
int filter_length;
|
||||
|
||||
double i_rate;
|
||||
double o_rate;
|
||||
|
||||
void *priv;
|
||||
|
||||
void *(*get_buffer)(void *priv, unsigned int size);
|
||||
|
||||
/* internal parameters */
|
||||
|
||||
double halftaps;
|
||||
|
||||
/* filter state */
|
||||
|
||||
void *buffer;
|
||||
int buffer_len;
|
||||
|
||||
double i_start;
|
||||
double o_start;
|
||||
|
||||
double i_start_buf;
|
||||
double i_end_buf;
|
||||
|
||||
double i_inc;
|
||||
double o_inc;
|
||||
|
||||
double i_end;
|
||||
double o_end;
|
||||
|
||||
int i_samples;
|
||||
int o_samples;
|
||||
|
||||
void *i_buf, *o_buf;
|
||||
|
||||
double acc[10];
|
||||
|
||||
/* methods */
|
||||
void (*scale)(resample_t *r);
|
||||
|
||||
double ack;
|
||||
};
|
||||
|
||||
enum{
|
||||
RESAMPLE_NEAREST = 0,
|
||||
RESAMPLE_BILINEAR,
|
||||
RESAMPLE_SINC_SLOW,
|
||||
RESAMPLE_SINC,
|
||||
};
|
||||
|
||||
void resample_init(resample_t *r);
|
||||
void resample_reinit(resample_t *r);
|
||||
|
||||
void resample_scale(resample_t *r, void *i_buf, unsigned int size);
|
||||
|
||||
void resample_nearest(resample_t *r);
|
||||
void resample_bilinear(resample_t *r);
|
||||
void resample_sinc(resample_t *r);
|
||||
void resample_sinc_slow(resample_t *r);
|
||||
|
||||
|
||||
typedef struct functable_s functable_t;
|
||||
struct functable_s {
|
||||
double start;
|
||||
double offset;
|
||||
int len;
|
||||
|
||||
double invoffset;
|
||||
|
||||
double scale;
|
||||
double scale2;
|
||||
|
||||
double (*func_x)(void *,double x);
|
||||
double (*func_dx)(void *,double x);
|
||||
|
||||
double (*func2_x)(void *,double x);
|
||||
double (*func2_dx)(void *,double x);
|
||||
|
||||
double *fx;
|
||||
double *fdx;
|
||||
|
||||
void *priv;
|
||||
};
|
||||
|
||||
void functable_init(functable_t *t);
|
||||
double functable_eval(functable_t *t,double x);
|
||||
|
||||
double functable_fir(functable_t *t,double x0,int n,double *data,int len);
|
||||
void functable_fir2(functable_t *t,double *r0, double *r1, double x0,
|
||||
int n,double *data,int len);
|
||||
|
||||
double functable_sinc(void *p, double x);
|
||||
double functable_dsinc(void *p, double x);
|
||||
double functable_window_std(void *p, double x);
|
||||
double functable_window_dstd(void *p, double x);
|
||||
double functable_window_boxcar(void *p, double x);
|
||||
double functable_window_dboxcar(void *p, double x);
|
||||
|
||||
/* math lib stuff */
|
||||
|
||||
void conv_double_short_table(double *dest, short *src, int n);
|
||||
void conv_double_short_unroll(double *dest, short *src, int n);
|
||||
void conv_double_short_ref(double *dest, short *src, int n);
|
||||
void conv_double_short_altivec(double *dest, short *src, int n);
|
||||
|
||||
void conv_short_double_ref(short *dest, double *src, int n);
|
||||
void conv_short_double_ppcasm(short *dest, double *src, int n);
|
||||
|
||||
#define conv_double_short conv_double_short_table
|
||||
#define conv_short_double conv_short_double_ppcasm
|
||||
|
||||
#endif /* __RESAMPLE_H__ */
|
||||
|
280
libs/resample/test.c
Normal file
280
libs/resample/test.c
Normal file
|
@ -0,0 +1,280 @@
|
|||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <sys/time.h>
|
||||
|
||||
#include <resample.h>
|
||||
|
||||
#define AMP 16000
|
||||
#define I_RATE 48000
|
||||
#define O_RATE 44100
|
||||
//#define O_RATE 24000
|
||||
|
||||
//#define test_func(x) 1
|
||||
//#define test_func(x) sin(2*M_PI*(x)*10)
|
||||
//#define test_func(x) sin(2*M_PI*(x)*(x)*1000)
|
||||
#define test_func(x) sin(2*M_PI*(x)*(x)*12000)
|
||||
|
||||
short i_buf[I_RATE*2*2];
|
||||
short o_buf[O_RATE*2*2];
|
||||
|
||||
static int i_offset;
|
||||
static int o_offset;
|
||||
|
||||
FILE *out;
|
||||
|
||||
void test_res1(void);
|
||||
void test_res2(void);
|
||||
void test_res3(void);
|
||||
void test_res4(void);
|
||||
void test_res5(void);
|
||||
void test_res6(void);
|
||||
|
||||
int main(int argc,char *argv[])
|
||||
{
|
||||
out = fopen("out","w");
|
||||
|
||||
test_res1();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void *get_buffer(void *priv, unsigned int size)
|
||||
{
|
||||
void *ret;
|
||||
ret = ((void *)o_buf) + o_offset;
|
||||
o_offset += size;
|
||||
return ret;
|
||||
}
|
||||
|
||||
struct timeval start_time;
|
||||
void start_timer(void)
|
||||
{
|
||||
gettimeofday(&start_time,NULL);
|
||||
//printf("start %ld.%06ld\n",start_time.tv_sec,start_time.tv_usec);
|
||||
}
|
||||
|
||||
void end_timer(void)
|
||||
{
|
||||
struct timeval end_time;
|
||||
double diff;
|
||||
|
||||
gettimeofday(&end_time,NULL);
|
||||
//printf("end %ld.%06ld\n",end_time.tv_sec,end_time.tv_usec);
|
||||
diff = (end_time.tv_sec - start_time.tv_sec) +
|
||||
1e-6*(end_time.tv_usec - start_time.tv_usec);
|
||||
|
||||
printf("time %g\n",diff);
|
||||
|
||||
}
|
||||
|
||||
void test_res1(void)
|
||||
{
|
||||
resample_t *r;
|
||||
int i;
|
||||
double sum10k,sum22k;
|
||||
double f;
|
||||
int n10k,n22k;
|
||||
double x;
|
||||
|
||||
for(i=0;i<I_RATE;i++){
|
||||
i_buf[i*2+0] = rint(AMP * test_func((double)i/I_RATE));
|
||||
//i_buf[i*2+1] = rint(AMP * test_func((double)i/I_RATE));
|
||||
i_buf[i*2+1] = (i<1000)?AMP:0;
|
||||
}
|
||||
|
||||
r = malloc(sizeof(resample_t));
|
||||
memset(r,0,sizeof(resample_t));
|
||||
|
||||
r->i_rate = I_RATE;
|
||||
r->o_rate = O_RATE;
|
||||
//r->method = RESAMPLE_SINC_SLOW;
|
||||
r->method = RESAMPLE_SINC;
|
||||
r->channels = 2;
|
||||
//r->verbose = 1;
|
||||
r->filter_length = 64;
|
||||
r->get_buffer = get_buffer;
|
||||
|
||||
resample_init(r);
|
||||
|
||||
start_timer();
|
||||
#define blocked
|
||||
#ifdef blocked
|
||||
for(i=0;i+256<I_RATE;i+=256){
|
||||
resample_scale(r,i_buf+i*2,256*2*2);
|
||||
}
|
||||
if(I_RATE-i){
|
||||
resample_scale(r,i_buf+i*2,(I_RATE-i)*2*2);
|
||||
}
|
||||
#else
|
||||
resample_scale(r,i_buf,I_RATE*2*2);
|
||||
#endif
|
||||
end_timer();
|
||||
|
||||
for(i=0;i<O_RATE;i++){
|
||||
f = AMP*test_func((double)i/O_RATE);
|
||||
//f = rint(AMP*test_func((double)i/O_RATE));
|
||||
fprintf(out,"%d %d %d %g %g\n",i,
|
||||
o_buf[2*i+0],o_buf[2*i+1],
|
||||
f,o_buf[2*i+0]-f);
|
||||
}
|
||||
|
||||
sum10k=0;
|
||||
sum22k=0;
|
||||
n10k=0;
|
||||
n22k=0;
|
||||
for(i=0;i<O_RATE;i++){
|
||||
f = AMP*test_func((double)i/O_RATE);
|
||||
//f = rint(AMP*test_func((double)i/O_RATE));
|
||||
x = o_buf[2*i+0]-f;
|
||||
if(((0.5*i)/O_RATE*I_RATE)<10000){
|
||||
sum10k += x*x;
|
||||
n10k++;
|
||||
}
|
||||
if(((0.5*i)/O_RATE*I_RATE)<22050){
|
||||
sum22k += x*x;
|
||||
n22k++;
|
||||
}
|
||||
}
|
||||
printf("average error 10k=%g 22k=%g\n",
|
||||
sqrt(sum10k/n10k),
|
||||
sqrt(sum22k/n22k));
|
||||
}
|
||||
|
||||
|
||||
void test_res2(void)
|
||||
{
|
||||
functable_t *t;
|
||||
int i;
|
||||
double x;
|
||||
double f1,f2;
|
||||
|
||||
t = malloc(sizeof(*t));
|
||||
memset(t,0,sizeof(*t));
|
||||
|
||||
t->start = -50.0;
|
||||
t->offset = 1;
|
||||
t->len = 100;
|
||||
|
||||
t->func_x = functable_sinc;
|
||||
t->func_dx = functable_dsinc;
|
||||
|
||||
functable_init(t);
|
||||
|
||||
for(i=0;i<1000;i++){
|
||||
x = -50.0 + 0.1 * i;
|
||||
f1 = functable_sinc(NULL,x);
|
||||
f2 = functable_eval(t,x);
|
||||
fprintf(out,"%d %g %g %g\n",i,f1,f2,f1-f2);
|
||||
}
|
||||
}
|
||||
|
||||
void test_res3(void)
|
||||
{
|
||||
functable_t *t;
|
||||
int i;
|
||||
double x;
|
||||
double f1,f2;
|
||||
int n = 1;
|
||||
|
||||
t = malloc(sizeof(*t));
|
||||
memset(t,0,sizeof(*t));
|
||||
|
||||
t->start = -50.0;
|
||||
t->offset = 1.0 / n;
|
||||
t->len = 100 * n;
|
||||
|
||||
t->func_x = functable_sinc;
|
||||
t->func_dx = functable_dsinc;
|
||||
|
||||
t->func2_x = functable_window_std;
|
||||
t->func2_dx = functable_window_dstd;
|
||||
|
||||
t->scale = 1.0;
|
||||
t->scale2 = 1.0 / (M_PI * 16);
|
||||
|
||||
functable_init(t);
|
||||
|
||||
for(i=0;i<1000 * n;i++){
|
||||
x = -50.0 + 0.1/n * i;
|
||||
f1 = functable_sinc(NULL,t->scale * x) *
|
||||
functable_window_std(NULL,t->scale2 * x);
|
||||
f2 = functable_eval(t,x);
|
||||
fprintf(out,"%d %g %g %g\n",i,f1,f2,f2-f1);
|
||||
}
|
||||
}
|
||||
|
||||
double sinc_poly(double x)
|
||||
{
|
||||
#define INV3FAC 1.66666666666666666e-1
|
||||
#define INV5FAC 8.33333333333333333e-3
|
||||
#define INV7FAC 1.984126984e-4
|
||||
#define INV9FAC 2.755731922e-6
|
||||
#define INV11FAC 2.505210839e-8
|
||||
double x2 = x * x;
|
||||
|
||||
return 1
|
||||
- x2 * INV3FAC
|
||||
+ x2 * x2 * INV5FAC
|
||||
- x2 * x2 * x2 * INV7FAC;
|
||||
//+ x2 * x2 * x2 * x2 * INV9FAC
|
||||
//- x2 * x2 * x2 * x2 * x2 * INV11FAC;
|
||||
}
|
||||
|
||||
void test_res4(void)
|
||||
{
|
||||
int i;
|
||||
double x,f1,f2;
|
||||
|
||||
for(i=1;i<100;i++){
|
||||
x = 0.01 * i;
|
||||
f1 = 1 - sin(x)/x;
|
||||
f2 = 1 - sinc_poly(x);
|
||||
|
||||
fprintf(out,"%g %.20g %.20g %.20g\n",x,f1,f2,f2-f1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void test_res5(void)
|
||||
{
|
||||
int i;
|
||||
double sum;
|
||||
|
||||
start_timer();
|
||||
sum = 0;
|
||||
for(i=0;i<I_RATE;i++){
|
||||
sum += i_buf[i*2];
|
||||
}
|
||||
end_timer();
|
||||
i_buf[0] = sum;
|
||||
}
|
||||
|
||||
|
||||
void short_to_double(double *d,short *x) { *d = *x; }
|
||||
void short_to_float(float *f,short *x) { *f = *x; }
|
||||
void float_to_double(double *f,float *x) { *f = *x; }
|
||||
void double_to_short(short *f,double *x) { *f = *x; }
|
||||
|
||||
double res6_tmp[1000];
|
||||
|
||||
void test_res6(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
for(i=0;i<I_RATE;i++){
|
||||
i_buf[i] = rint(AMP * test_func((double)i/I_RATE));
|
||||
}
|
||||
|
||||
conv_double_short_ref(res6_tmp,i_buf,1000);
|
||||
for(i=0;i<1000;i++){
|
||||
res6_tmp[i] *= 3.0;
|
||||
}
|
||||
conv_short_double_ppcasm(o_buf,res6_tmp,1000);
|
||||
|
||||
for(i=0;i<1000;i++){
|
||||
fprintf(out,"%d %d %g %d\n",i,i_buf[i],res6_tmp[i],o_buf[i]);
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in a new issue