gstreamer/docs/design/part-buffering.txt

321 lines
12 KiB
Text
Raw Normal View History

Buffering
---------
This document outlines the buffering policy used in the GStreamer
core that can be used by plugins and applications.
The purpose of buffering is to accumulate enough data in a pipeline so that
playback can occur smoothly and without interruptions. It is typically done
when reading from a (slow) non-live network source but can also be used for
live sources.
We want to be able to implement the following features:
- buffering up to a specific amount of data, in memory, before starting playback
so that network fluctuations are minimized.
- download of the network file to a local disk with fast seeking in the
downloaded data. This is similar to the quicktime/youtube players.
- caching of semi-live streams to a local, on disk, ringbuffer with seeking in
the cached area. This is similar to tivo-like timeshifting.
- progress report about the buffering operations
- the possibility for the application to do more complex buffering
Some use cases:
* Stream buffering:
+---------+ +---------+ +-------+
| httpsrc | | buffer | | demux |
| src - sink src - sink ....
+---------+ +---------+ +-------+
In this case we are reading from a slow network source into a buffer element
(such as queue2).
The buffer element has a low and high watermark expressed in bytes. The
buffer uses the watermarks as follows:
- The buffer element will post BUFFERING messages until the high watermark
is hit. This instructs the application to keep the pipeline PAUSED, which
will eventually block the srcpad from pushing while data is prerolled in
the sinks.
- When the high watermark is hit, a BUFFERING message with 100% will be
posted, which instructs the application to continue playback.
- When the low watermark is hit during playback, the queue will start posting
BUFFERING messages again, making the application PAUSE the pipeline again
until the high watermark is hit again. This is called the rebuffering
stage.
- During playback, the queue level will fluctuate between the high and
low watermarks as a way to compensate for network irregularities.
This buffering method is usable when the demuxer operates in push mode.
Seeking in the stream requires the seek to happen in the network source.
2012-10-08 14:42:11 +00:00
It is mostly desirable when the total duration of the file is not known, such
as in live streaming or when efficient seeking is not possible/required.
* Incremental download
+---------+ +---------+ +-------+
| httpsrc | | buffer | | demux |
| src - sink src - sink ....
+---------+ +----|----+ +-------+
V
file
In this case, we know the server is streaming a fixed length file to the
client. The application can choose to download the file to disk. The buffer
element will provide a push or pull based srcpad to the demuxer to navigate in
the downloaded file.
This mode is only suitable when the client can determine the length of the
file on the server.
In this case, buffering messages will be emitted as usual when the requested
range is not within the downloaded area + buffersize. The buffering message
will also contain an indication that incremental download is being performed.
This flag can be used to let the application control the buffering in a more
intelligent way, using the BUFFERING query, for example.
The application can use the BUFFERING query to get the estimated download time
and match this time to the current/remaining playback time to control when
playback should start to have a non-interrupted playback experience.
* Timeshifting
+---------+ +---------+ +-------+
| httpsrc | | buffer | | demux |
| src - sink src - sink ....
+---------+ +----|----+ +-------+
V
file-ringbuffer
In this mode, a fixed size ringbuffer is kept to download the server content.
This allows for seeking in the buffered data. Depending on the size of the
buffer one can seek further back in time.
This mode is suitable for all live streams.
As with the incremental download mode, buffering messages are emitted along
with an indication that timeshifting download is in progress.
* Live buffering
In live pipelines we usually introduce some latency between the capture and
the playback elements. This latency can be introduced by a queue (such as a
jitterbuffer) or by other means (in the audiosink).
Buffering messages can be emitted in those live pipelines as well and serve as
an indication to the user of the latency buffering. The application usually
does not react to these buffering messages with a state change.
Messages
~~~~~~~~
A GST_MESSAGE_BUFFERING must be posted on the bus when playback temporarily
stops to buffer and when buffering finishes. When the percentage field in the
BUFFERING message is 100, buffering is done. Values less than 100 mean that
buffering is in progress.
The BUFFERING message should be intercepted and acted upon by the application.
The message contains at least one field that is sufficient for basic
functionality:
"buffer-percent", G_TYPE_INT, between 0 and 100
Several more clever ways of dealing with the buffering messages can be used when
in incremental or timeshifting download mode. For this purpose additional fields
are added to the buffering message:
"buffering-mode", GST_TYPE_BUFFERING_MODE,
enum { "stream", "download", "timeshift", "live" }
- Buffering mode in use. See above for an explanation of the
different alternatives. This field can be used to let the
application have more control over the buffering process.
"avg-in-rate", G_TYPE_INT
- Average input buffering speed in bytes/second. -1 is unknown.
This is the average number of bytes per second that is received on the
buffering element input (sink) pads. It is a measurement of the network
speed in most cases.
"avg-out-rate", G_TYPE_INT
- Average consumption speed in bytes/second. -1 is unknown.
This is the average number of bytes per second that is consumed by the
downstream element of the buffering element.
"buffering-left", G_TYPE_INT64
- Estimated time that buffering will take in milliseconds. -1 is unknown.
This is measured based on the avg-in-rate and the filled level of the
queue. The application can use this hint to update the GUI about the
estimated remaining time that buffering will take.
Application
~~~~~~~~~~~
While data is buffered the pipeline should remain in the PAUSED state. It is
also possible that more data should be buffered while the pipeline is PLAYING,
in which case the pipeline should be PAUSED until the buffering finishes.
BUFFERING messages can be posted while the pipeline is prerolling. The
application should not set the pipeline to PLAYING before a BUFFERING message
with a 100 percent value is received, which might only happen after the pipeline
prerolls.
An exception is made for live pipelines. The application may not change
the state of a live pipeline when a buffering message is received. Usually these
buffering messages contain the "buffering-mode" = "live".
The buffering message can also instruct the application to switch to a
periodical BUFFERING query instead, so it can more precisely control the
buffering process. The application can, for example, choose not to act on the
BUFFERING complete message (buffer-percent = 100) to resume playback but use
the estimated download time instead, resuming playback when it has determined
that it should be able to provide uninterrupted playback.
Buffering Query
~~~~~~~~~~~~~~~
In addition to the BUFFERING messages posted by the buffering elements, we want
to be able to query the same information from the application. We also want to
be able to present the user with information about the downloaded range in the
file so that the GUI can react on it.
In addition to all the fields present in the buffering message, the BUFFERING
query contains the following field, which indicates the available downloaded
range in a specific format and the estimated time to complete:
"busy", G_TYPE_BOOLEAN
- if buffering was busy. This flag allows the application to pause the
pipeline by using the query only.
"format", GST_TYPE_FORMAT
- the format of the "start" and "stop" values below
"start", G_TYPE_INT64, -1 unknown
- the start position of the available data
"stop", G_TYPE_INT64, -1 unknown
- the stop position of the available data
"estimated-total", G_TYPE_INT64
- gives the estimated download time in milliseconds. -1 unknown.
When the size of the downloaded file is known, this value will contain
the latest estimate of the remaining download time. This value is usually
only filled for the "download" buffering mode. The application can use
this information to estimate the amount of remaining time to download the
complete file.
2012-06-15 13:48:42 +00:00
"buffering-ranges", G_TYPE_ARRAY of GstQueryBufferingRange
- contains optionally the downloaded areas in the format given above. One
of the ranges contains the same start/stop position as above.
typedef struct
{
gint64 start;
gint64 stop;
} GstQueryBufferingRange;
For the "download" and "timeshift" buffering-modes, the start and stop positions
specify the ranges where efficient seeking in the downloaded media is possible.
Seeking outside of these ranges might be slow or not at all possible.
For the "stream" and "live" mode the start and stop values describe the oldest
and newest item (expressed in "format") in the buffer.
Defaults
~~~~~~~~
Some defaults for common elements:
A GstBaseSrc with random access replies to the BUFFERING query with:
"buffer-percent" = 100
"buffering-mode" = "stream"
"avg-in-rate" = -1
"avg-out-rate" = -1
"buffering-left" = 0
"format" = GST_FORMAT_BYTES
"start" = 0
"stop" = the total filesize
"estimated-total" = 0
2012-06-15 13:48:42 +00:00
"buffering-ranges" = NULL
A GstBaseSrc in push mode replies to the BUFFERING query with:
"buffer-percent" = 100
"buffering-mode" = "stream"
"avg-in-rate" = -1
"avg-out-rate" = -1
"buffering-left" = 0
"format" = a valid GST_TYPE_FORMAT
"start" = current position
"stop" = current position
"estimated-total" = -1
2012-06-15 13:48:42 +00:00
"buffering-ranges" = NULL
Buffering strategies
~~~~~~~~~~~~~~~~~~~~
Buffering strategies are specific implementations based on the buffering
message and query described above.
Most strategies have to balance buffering time versus maximal playback
experience.
* simple buffering
NON-live pipelines are kept in the paused state while buffering messages with
a percent < 100% are received.
This buffering strategy relies on the buffer size and low/high watermarks of
the element. It can work with a fixed size buffer in memory or on disk.
The size of the buffer is usually expressed in a fixed amount of time units
and the estimated bitrate of the upstream source is used to convert this time
to bytes.
All GStreamer applications must implement this strategy. Failure to do so
will result in starvation at the sink.
* no-rebuffer strategy
This strategy tries to buffer as much data as possible so that playback can
continue without any further rebuffering.
This strategy is initially similar to simple buffering, the difference is in
deciding on the condition to continue playback. When a 100% buffering message
has been received, the application will not yet start the playback but it will
start a periodic buffering query, which will return the estimated amount of
buffering time left. When the estimated time left is less than the remaining
playback time, playback can continue.
This strategy requires a unlimited buffer size in memory or on disk, such as
provided by elements that implement the incremental download buffering mode.
Usually, the application can choose to start playback even before the
remaining buffer time elapsed in order to more quickly start the playback at
the expense of a possible rebuffering phase.
* Incremental rebuffering
The application implements the simple buffering strategy but with each
rebuffering phase, it increases the size of the buffer.
This strategy has quick, fixed time startup times but incrementally longer
rebuffering times if the network is slower than the media bitrate.