2023-06-26 14:55:53 +00:00
|
|
|
/*
|
|
|
|
* GStreamer gstreamer-onnxinference
|
|
|
|
* Copyright (C) 2023 Collabora Ltd.
|
|
|
|
*
|
|
|
|
* gstonnxinference.cpp
|
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Library General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Library General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Library General Public
|
|
|
|
* License along with this library; if not, write to the
|
|
|
|
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
|
|
|
|
* Boston, MA 02110-1301, USA.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* SECTION:element-onnxinference
|
|
|
|
* @short_description: Run ONNX inference model on video buffers
|
|
|
|
*
|
|
|
|
* This element can apply an ONNX model to video buffers. It attaches
|
|
|
|
* the tensor output to the buffer as a @ref GstTensorMeta.
|
|
|
|
*
|
|
|
|
* To install ONNX on your system, recursively clone this repository
|
|
|
|
* https://github.com/microsoft/onnxruntime.git
|
|
|
|
*
|
|
|
|
* and build and install with cmake:
|
|
|
|
*
|
|
|
|
* CPU:
|
|
|
|
*
|
|
|
|
* cmake -Donnxruntime_BUILD_SHARED_LIB:ON -DBUILD_TESTING:OFF \
|
|
|
|
* $SRC_DIR/onnxruntime/cmake && make -j$(nproc) && sudo make install
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* CUDA :
|
|
|
|
*
|
|
|
|
* cmake -Donnxruntime_BUILD_SHARED_LIB:ON -DBUILD_TESTING:OFF -Donnxruntime_USE_CUDA:ON \
|
|
|
|
* -Donnxruntime_CUDA_HOME=$CUDA_PATH -Donnxruntime_CUDNN_HOME=$CUDA_PATH \
|
|
|
|
* $SRC_DIR/onnxruntime/cmake && make -j$(nproc) && sudo make install
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* where :
|
|
|
|
*
|
|
|
|
* 1. $SRC_DIR and $BUILD_DIR are local source and build directories
|
|
|
|
* 2. To run with CUDA, both CUDA and cuDNN libraries must be installed.
|
|
|
|
* $CUDA_PATH is an environment variable set to the CUDA root path.
|
|
|
|
* On Linux, it would be /usr/local/cuda
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* ## Example launch command:
|
|
|
|
*
|
|
|
|
* GST_DEBUG=onnxinference:5 gst-launch-1.0 multifilesrc location=bus.jpg ! \
|
|
|
|
* jpegdec ! videoconvert ! \
|
|
|
|
* onnxinference execution-provider=cpu model-file=model.onnx \
|
|
|
|
* videoconvert ! autovideosink
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Note: in order for downstream tensor decoders to correctly parse the tensor
|
|
|
|
* data in the GstTensorMeta, meta data must be attached to the ONNX model
|
|
|
|
* assigning a unique string id to each output layer. These unique string ids
|
|
|
|
* and corresponding GQuark ids are currently stored in the ONNX plugin source
|
|
|
|
* in the file 'gsttensorid.h'. For an output layer with name Foo and with context
|
|
|
|
* unique string id Gst.Model.Bar, a meta data key/value pair must be added
|
|
|
|
* to the ONNX model with "Foo" mapped to "Gst.Model.Bar" in order for a downstream
|
|
|
|
* decoder to make use of this model. If the meta data is absent, the pipeline will
|
|
|
|
* fail.
|
|
|
|
*
|
|
|
|
* As a convenience, there is a python script
|
|
|
|
* currently stored at
|
|
|
|
* https://gitlab.collabora.com/gstreamer/onnx-models/-/blob/master/scripts/modify_onnx_metadata.py
|
|
|
|
* to enable users to easily add and remove meta data from json files. It can also dump
|
|
|
|
* the names of all output layers, which can then be used to craft the json meta data file.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
|
|
#include "config.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <gst/gst.h>
|
|
|
|
#include "gstonnxinference.h"
|
|
|
|
#include "gstonnxclient.h"
|
|
|
|
|
2023-10-19 23:33:49 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* GstOnnxInference:
|
|
|
|
*
|
|
|
|
* @model_file model file
|
|
|
|
* @optimization_level: ONNX session optimization level
|
|
|
|
* @execution_provider: ONNX execution provider
|
|
|
|
* @onnx_client opaque pointer to ONNX client
|
|
|
|
* @onnx_disabled true if inference is disabled
|
|
|
|
* @video_info @ref GstVideoInfo of sink caps
|
|
|
|
*/
|
|
|
|
struct _GstOnnxInference
|
|
|
|
{
|
|
|
|
GstBaseTransform basetransform;
|
|
|
|
gchar *model_file;
|
|
|
|
GstOnnxOptimizationLevel optimization_level;
|
|
|
|
GstOnnxExecutionProvider execution_provider;
|
|
|
|
gpointer onnx_client;
|
|
|
|
gboolean onnx_disabled;
|
|
|
|
GstVideoInfo video_info;
|
|
|
|
};
|
|
|
|
|
2023-06-26 14:55:53 +00:00
|
|
|
GST_DEBUG_CATEGORY_STATIC (onnx_inference_debug);
|
|
|
|
#define GST_CAT_DEFAULT onnx_inference_debug
|
|
|
|
#define GST_ONNX_CLIENT_MEMBER( self ) ((GstOnnxNamespace::GstOnnxClient *) (self->onnx_client))
|
|
|
|
GST_ELEMENT_REGISTER_DEFINE (onnx_inference, "onnxinference",
|
|
|
|
GST_RANK_PRIMARY, GST_TYPE_ONNX_INFERENCE);
|
|
|
|
|
|
|
|
/* GstOnnxInference properties */
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
PROP_0,
|
|
|
|
PROP_MODEL_FILE,
|
|
|
|
PROP_INPUT_IMAGE_FORMAT,
|
|
|
|
PROP_OPTIMIZATION_LEVEL,
|
2023-08-03 00:43:48 +00:00
|
|
|
PROP_EXECUTION_PROVIDER,
|
2023-12-05 00:57:39 +00:00
|
|
|
PROP_INPUT_IMAGE_DATATYPE,
|
|
|
|
PROP_INPUT_OFFSET,
|
|
|
|
PROP_INPUT_SCALE
|
2023-06-26 14:55:53 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
#define GST_ONNX_INFERENCE_DEFAULT_EXECUTION_PROVIDER GST_ONNX_EXECUTION_PROVIDER_CPU
|
|
|
|
#define GST_ONNX_INFERENCE_DEFAULT_OPTIMIZATION_LEVEL GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_EXTENDED
|
|
|
|
|
|
|
|
static GstStaticPadTemplate gst_onnx_inference_src_template =
|
|
|
|
GST_STATIC_PAD_TEMPLATE ("src",
|
|
|
|
GST_PAD_SRC,
|
|
|
|
GST_PAD_ALWAYS,
|
|
|
|
GST_STATIC_CAPS (GST_VIDEO_CAPS_MAKE ("{ RGB,RGBA,BGR,BGRA }"))
|
|
|
|
);
|
|
|
|
|
|
|
|
static GstStaticPadTemplate gst_onnx_inference_sink_template =
|
|
|
|
GST_STATIC_PAD_TEMPLATE ("sink",
|
|
|
|
GST_PAD_SINK,
|
|
|
|
GST_PAD_ALWAYS,
|
|
|
|
GST_STATIC_CAPS (GST_VIDEO_CAPS_MAKE ("{ RGB,RGBA,BGR,BGRA }"))
|
|
|
|
);
|
|
|
|
|
|
|
|
static void gst_onnx_inference_set_property (GObject * object,
|
|
|
|
guint prop_id, const GValue * value, GParamSpec * pspec);
|
|
|
|
static void gst_onnx_inference_get_property (GObject * object,
|
|
|
|
guint prop_id, GValue * value, GParamSpec * pspec);
|
|
|
|
static void gst_onnx_inference_finalize (GObject * object);
|
|
|
|
static GstFlowReturn gst_onnx_inference_transform_ip (GstBaseTransform *
|
|
|
|
trans, GstBuffer * buf);
|
|
|
|
static gboolean gst_onnx_inference_process (GstBaseTransform * trans,
|
|
|
|
GstBuffer * buf);
|
|
|
|
static gboolean gst_onnx_inference_create_session (GstBaseTransform * trans);
|
|
|
|
static GstCaps *gst_onnx_inference_transform_caps (GstBaseTransform *
|
|
|
|
trans, GstPadDirection direction, GstCaps * caps, GstCaps * filter_caps);
|
|
|
|
static gboolean
|
|
|
|
gst_onnx_inference_set_caps (GstBaseTransform * trans, GstCaps * incaps,
|
|
|
|
GstCaps * outcaps);
|
|
|
|
|
|
|
|
G_DEFINE_TYPE (GstOnnxInference, gst_onnx_inference, GST_TYPE_BASE_TRANSFORM);
|
|
|
|
|
|
|
|
GType gst_onnx_optimization_level_get_type (void);
|
|
|
|
#define GST_TYPE_ONNX_OPTIMIZATION_LEVEL (gst_onnx_optimization_level_get_type ())
|
|
|
|
|
|
|
|
GType gst_onnx_execution_provider_get_type (void);
|
|
|
|
#define GST_TYPE_ONNX_EXECUTION_PROVIDER (gst_onnx_execution_provider_get_type ())
|
|
|
|
|
|
|
|
GType gst_ml_model_input_image_format_get_type (void);
|
|
|
|
#define GST_TYPE_ML_MODEL_INPUT_IMAGE_FORMAT (gst_ml_model_input_image_format_get_type ())
|
|
|
|
|
2023-08-03 00:43:48 +00:00
|
|
|
GType gst_onnx_model_input_image_datatype_get_type (void);
|
|
|
|
#define GST_TYPE_ONNX_MODEL_INPUT_IMAGE_DATATYPE (gst_onnx_model_input_image_datatype_get_type ())
|
|
|
|
|
2023-06-26 14:55:53 +00:00
|
|
|
GType
|
|
|
|
gst_onnx_optimization_level_get_type (void)
|
|
|
|
{
|
|
|
|
static GType onnx_optimization_type = 0;
|
|
|
|
|
|
|
|
if (g_once_init_enter (&onnx_optimization_type)) {
|
|
|
|
static GEnumValue optimization_level_types[] = {
|
|
|
|
{GST_ONNX_OPTIMIZATION_LEVEL_DISABLE_ALL, "Disable all optimization",
|
|
|
|
"disable-all"},
|
|
|
|
{GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_BASIC,
|
|
|
|
"Enable basic optimizations (redundant node removals))",
|
|
|
|
"enable-basic"},
|
|
|
|
{GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_EXTENDED,
|
|
|
|
"Enable extended optimizations (redundant node removals + node fusions)",
|
|
|
|
"enable-extended"},
|
|
|
|
{GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_ALL,
|
|
|
|
"Enable all possible optimizations", "enable-all"},
|
|
|
|
{0, NULL, NULL},
|
|
|
|
};
|
|
|
|
|
|
|
|
GType temp = g_enum_register_static ("GstOnnxOptimizationLevel",
|
|
|
|
optimization_level_types);
|
|
|
|
|
|
|
|
g_once_init_leave (&onnx_optimization_type, temp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return onnx_optimization_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
GType
|
|
|
|
gst_onnx_execution_provider_get_type (void)
|
|
|
|
{
|
|
|
|
static GType onnx_execution_type = 0;
|
|
|
|
|
|
|
|
if (g_once_init_enter (&onnx_execution_type)) {
|
|
|
|
static GEnumValue execution_provider_types[] = {
|
|
|
|
{GST_ONNX_EXECUTION_PROVIDER_CPU, "CPU execution provider",
|
|
|
|
"cpu"},
|
|
|
|
{GST_ONNX_EXECUTION_PROVIDER_CUDA,
|
|
|
|
"CUDA execution provider",
|
|
|
|
"cuda"},
|
|
|
|
{0, NULL, NULL},
|
|
|
|
};
|
|
|
|
|
|
|
|
GType temp = g_enum_register_static ("GstOnnxExecutionProvider",
|
|
|
|
execution_provider_types);
|
|
|
|
|
|
|
|
g_once_init_leave (&onnx_execution_type, temp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return onnx_execution_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
GType
|
|
|
|
gst_ml_model_input_image_format_get_type (void)
|
|
|
|
{
|
|
|
|
static GType ml_model_input_image_format = 0;
|
|
|
|
|
|
|
|
if (g_once_init_enter (&ml_model_input_image_format)) {
|
|
|
|
static GEnumValue ml_model_input_image_format_types[] = {
|
|
|
|
{GST_ML_INPUT_IMAGE_FORMAT_HWC,
|
|
|
|
"Height Width Channel (HWC) a.k.a. interleaved image data format",
|
|
|
|
"hwc"},
|
|
|
|
{GST_ML_INPUT_IMAGE_FORMAT_CHW,
|
|
|
|
"Channel Height Width (CHW) a.k.a. planar image data format",
|
|
|
|
"chw"},
|
|
|
|
{0, NULL, NULL},
|
|
|
|
};
|
|
|
|
|
|
|
|
GType temp = g_enum_register_static ("GstMlInputImageFormat",
|
|
|
|
ml_model_input_image_format_types);
|
|
|
|
|
|
|
|
g_once_init_leave (&ml_model_input_image_format, temp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ml_model_input_image_format;
|
|
|
|
}
|
|
|
|
|
2023-08-03 00:43:48 +00:00
|
|
|
GType
|
|
|
|
gst_onnx_model_input_image_datatype_get_type (void)
|
|
|
|
{
|
|
|
|
static GType model_input_image_datatype = 0;
|
|
|
|
|
|
|
|
if (g_once_init_enter (&model_input_image_datatype)) {
|
|
|
|
static GEnumValue model_input_image_datatype_types[] = {
|
|
|
|
{GST_TENSOR_TYPE_INT8, "8 Bits integer", "int8"},
|
|
|
|
{GST_TENSOR_TYPE_FLOAT32, "32 Bits floating points", "float"},
|
|
|
|
{0, NULL, NULL},
|
|
|
|
};
|
|
|
|
|
|
|
|
GType temp = g_enum_register_static ("GstTensorType",
|
|
|
|
model_input_image_datatype_types);
|
|
|
|
|
|
|
|
g_once_init_leave (&model_input_image_datatype, temp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return model_input_image_datatype;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2023-06-26 14:55:53 +00:00
|
|
|
static void
|
|
|
|
gst_onnx_inference_class_init (GstOnnxInferenceClass * klass)
|
|
|
|
{
|
|
|
|
GObjectClass *gobject_class = (GObjectClass *) klass;
|
|
|
|
GstElementClass *element_class = (GstElementClass *) klass;
|
|
|
|
GstBaseTransformClass *basetransform_class = (GstBaseTransformClass *) klass;
|
|
|
|
|
|
|
|
GST_DEBUG_CATEGORY_INIT (onnx_inference_debug, "onnxinference",
|
|
|
|
0, "onnx_inference");
|
|
|
|
gobject_class->set_property = gst_onnx_inference_set_property;
|
|
|
|
gobject_class->get_property = gst_onnx_inference_get_property;
|
|
|
|
gobject_class->finalize = gst_onnx_inference_finalize;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* GstOnnxInference:model-file
|
|
|
|
*
|
|
|
|
* ONNX model file
|
|
|
|
*
|
|
|
|
* Since: 1.24
|
|
|
|
*/
|
|
|
|
g_object_class_install_property (G_OBJECT_CLASS (klass), PROP_MODEL_FILE,
|
|
|
|
g_param_spec_string ("model-file",
|
|
|
|
"ONNX model file", "ONNX model file", NULL, (GParamFlags)
|
|
|
|
(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
|
|
|
|
|
|
|
|
/**
|
|
|
|
* GstOnnxInference:input-image-format
|
|
|
|
*
|
|
|
|
* Model input image format
|
|
|
|
*
|
|
|
|
* Since: 1.24
|
|
|
|
*/
|
|
|
|
g_object_class_install_property (G_OBJECT_CLASS (klass),
|
|
|
|
PROP_INPUT_IMAGE_FORMAT,
|
|
|
|
g_param_spec_enum ("input-image-format",
|
|
|
|
"Input image format",
|
|
|
|
"Input image format",
|
|
|
|
GST_TYPE_ML_MODEL_INPUT_IMAGE_FORMAT,
|
|
|
|
GST_ML_INPUT_IMAGE_FORMAT_HWC, (GParamFlags)
|
|
|
|
(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
|
|
|
|
|
|
|
|
/**
|
|
|
|
* GstOnnxInference:optimization-level
|
|
|
|
*
|
|
|
|
* ONNX optimization level
|
|
|
|
*
|
|
|
|
* Since: 1.24
|
|
|
|
*/
|
|
|
|
g_object_class_install_property (G_OBJECT_CLASS (klass),
|
|
|
|
PROP_OPTIMIZATION_LEVEL,
|
|
|
|
g_param_spec_enum ("optimization-level",
|
|
|
|
"Optimization level",
|
|
|
|
"ONNX optimization level",
|
|
|
|
GST_TYPE_ONNX_OPTIMIZATION_LEVEL,
|
|
|
|
GST_ONNX_OPTIMIZATION_LEVEL_ENABLE_EXTENDED, (GParamFlags)
|
|
|
|
(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
|
|
|
|
|
|
|
|
/**
|
|
|
|
* GstOnnxInference:execution-provider
|
|
|
|
*
|
|
|
|
* ONNX execution provider
|
|
|
|
*
|
|
|
|
* Since: 1.24
|
|
|
|
*/
|
|
|
|
g_object_class_install_property (G_OBJECT_CLASS (klass),
|
|
|
|
PROP_EXECUTION_PROVIDER,
|
|
|
|
g_param_spec_enum ("execution-provider",
|
|
|
|
"Execution provider",
|
|
|
|
"ONNX execution provider",
|
|
|
|
GST_TYPE_ONNX_EXECUTION_PROVIDER,
|
|
|
|
GST_ONNX_EXECUTION_PROVIDER_CPU, (GParamFlags)
|
|
|
|
(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
|
|
|
|
|
2023-08-03 00:43:48 +00:00
|
|
|
/**
|
|
|
|
* GstOnnxInference:input-image-datatype
|
|
|
|
*
|
|
|
|
* Temporary hack, this should be discovered from the model and exposed
|
|
|
|
* on sinkpad caps based on model contrains.
|
|
|
|
*/
|
|
|
|
|
|
|
|
g_object_class_install_property (G_OBJECT_CLASS (klass),
|
|
|
|
PROP_INPUT_IMAGE_DATATYPE,
|
|
|
|
g_param_spec_enum ("input-image-datatype",
|
|
|
|
"Inference input image datatype",
|
|
|
|
"Datatype that will be used as an input for the inference",
|
|
|
|
GST_TYPE_ONNX_MODEL_INPUT_IMAGE_DATATYPE,
|
|
|
|
GST_TENSOR_TYPE_INT8,
|
|
|
|
(GParamFlags)(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
|
|
|
|
|
2023-12-05 00:57:39 +00:00
|
|
|
g_object_class_install_property (G_OBJECT_CLASS (klass),
|
|
|
|
PROP_INPUT_OFFSET,
|
|
|
|
g_param_spec_float ("input-tensor-offset",
|
|
|
|
"Input tensor offset",
|
|
|
|
"offset each tensor value by this value",
|
|
|
|
-G_MAXFLOAT, G_MAXFLOAT, 0.0,
|
|
|
|
(GParamFlags)(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
|
|
|
|
|
|
|
|
g_object_class_install_property (G_OBJECT_CLASS (klass),
|
|
|
|
PROP_INPUT_SCALE,
|
|
|
|
g_param_spec_float ("input-tensor-scale",
|
|
|
|
"Input tensor scale",
|
|
|
|
"Divide each tensor value by this value",
|
|
|
|
G_MINFLOAT, G_MAXFLOAT, 1.0,
|
|
|
|
(GParamFlags)(G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)));
|
|
|
|
|
|
|
|
|
2023-06-26 14:55:53 +00:00
|
|
|
gst_element_class_set_static_metadata (element_class, "onnxinference",
|
|
|
|
"Filter/Effect/Video",
|
|
|
|
"Apply neural network to video frames and create tensor output",
|
|
|
|
"Aaron Boxer <aaron.boxer@collabora.com>");
|
|
|
|
gst_element_class_add_pad_template (element_class,
|
|
|
|
gst_static_pad_template_get (&gst_onnx_inference_sink_template));
|
|
|
|
gst_element_class_add_pad_template (element_class,
|
|
|
|
gst_static_pad_template_get (&gst_onnx_inference_src_template));
|
|
|
|
basetransform_class->transform_ip =
|
|
|
|
GST_DEBUG_FUNCPTR (gst_onnx_inference_transform_ip);
|
|
|
|
basetransform_class->transform_caps =
|
|
|
|
GST_DEBUG_FUNCPTR (gst_onnx_inference_transform_caps);
|
|
|
|
basetransform_class->set_caps =
|
|
|
|
GST_DEBUG_FUNCPTR (gst_onnx_inference_set_caps);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
gst_onnx_inference_init (GstOnnxInference * self)
|
|
|
|
{
|
|
|
|
self->onnx_client = new GstOnnxNamespace::GstOnnxClient ();
|
|
|
|
self->onnx_disabled = TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
gst_onnx_inference_finalize (GObject * object)
|
|
|
|
{
|
|
|
|
GstOnnxInference *self = GST_ONNX_INFERENCE (object);
|
|
|
|
|
|
|
|
g_free (self->model_file);
|
|
|
|
delete GST_ONNX_CLIENT_MEMBER (self);
|
|
|
|
G_OBJECT_CLASS (gst_onnx_inference_parent_class)->finalize (object);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
gst_onnx_inference_set_property (GObject * object, guint prop_id,
|
|
|
|
const GValue * value, GParamSpec * pspec)
|
|
|
|
{
|
|
|
|
GstOnnxInference *self = GST_ONNX_INFERENCE (object);
|
|
|
|
const gchar *filename;
|
|
|
|
auto onnxClient = GST_ONNX_CLIENT_MEMBER (self);
|
|
|
|
|
|
|
|
switch (prop_id) {
|
|
|
|
case PROP_MODEL_FILE:
|
|
|
|
filename = g_value_get_string (value);
|
|
|
|
if (filename
|
|
|
|
&& g_file_test (filename,
|
|
|
|
(GFileTest) (G_FILE_TEST_EXISTS | G_FILE_TEST_IS_REGULAR))) {
|
|
|
|
if (self->model_file)
|
|
|
|
g_free (self->model_file);
|
|
|
|
self->model_file = g_strdup (filename);
|
|
|
|
self->onnx_disabled = FALSE;
|
|
|
|
} else {
|
|
|
|
GST_WARNING_OBJECT (self, "Model file '%s' not found!", filename);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case PROP_OPTIMIZATION_LEVEL:
|
|
|
|
self->optimization_level =
|
|
|
|
(GstOnnxOptimizationLevel) g_value_get_enum (value);
|
|
|
|
break;
|
|
|
|
case PROP_EXECUTION_PROVIDER:
|
|
|
|
self->execution_provider =
|
|
|
|
(GstOnnxExecutionProvider) g_value_get_enum (value);
|
|
|
|
break;
|
|
|
|
case PROP_INPUT_IMAGE_FORMAT:
|
|
|
|
onnxClient->setInputImageFormat ((GstMlInputImageFormat)
|
|
|
|
g_value_get_enum (value));
|
|
|
|
break;
|
2023-08-03 00:43:48 +00:00
|
|
|
case PROP_INPUT_IMAGE_DATATYPE:
|
|
|
|
onnxClient->setInputImageDatatype ((GstTensorType)
|
|
|
|
g_value_get_enum (value));
|
|
|
|
break;
|
2023-12-05 00:57:39 +00:00
|
|
|
case PROP_INPUT_OFFSET:
|
|
|
|
onnxClient->setInputImageOffset (g_value_get_float (value));
|
|
|
|
break;
|
|
|
|
case PROP_INPUT_SCALE:
|
|
|
|
onnxClient->setInputImageScale (g_value_get_float (value));
|
|
|
|
break;
|
2023-06-26 14:55:53 +00:00
|
|
|
default:
|
|
|
|
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
gst_onnx_inference_get_property (GObject * object, guint prop_id,
|
|
|
|
GValue * value, GParamSpec * pspec)
|
|
|
|
{
|
|
|
|
GstOnnxInference *self = GST_ONNX_INFERENCE (object);
|
|
|
|
auto onnxClient = GST_ONNX_CLIENT_MEMBER (self);
|
|
|
|
|
|
|
|
switch (prop_id) {
|
|
|
|
case PROP_MODEL_FILE:
|
|
|
|
g_value_set_string (value, self->model_file);
|
|
|
|
break;
|
|
|
|
case PROP_OPTIMIZATION_LEVEL:
|
|
|
|
g_value_set_enum (value, self->optimization_level);
|
|
|
|
break;
|
|
|
|
case PROP_EXECUTION_PROVIDER:
|
|
|
|
g_value_set_enum (value, self->execution_provider);
|
|
|
|
break;
|
|
|
|
case PROP_INPUT_IMAGE_FORMAT:
|
|
|
|
g_value_set_enum (value, onnxClient->getInputImageFormat ());
|
|
|
|
break;
|
2023-08-03 00:43:48 +00:00
|
|
|
case PROP_INPUT_IMAGE_DATATYPE:
|
|
|
|
g_value_set_enum (value, onnxClient->getInputImageDatatype ());
|
|
|
|
break;
|
2023-12-05 00:57:39 +00:00
|
|
|
case PROP_INPUT_OFFSET:
|
|
|
|
g_value_set_float (value, onnxClient->getInputImageOffset ());
|
|
|
|
break;
|
|
|
|
case PROP_INPUT_SCALE:
|
|
|
|
g_value_set_float (value, onnxClient->getInputImageScale ());
|
|
|
|
break;
|
2023-06-26 14:55:53 +00:00
|
|
|
default:
|
|
|
|
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static gboolean
|
|
|
|
gst_onnx_inference_create_session (GstBaseTransform * trans)
|
|
|
|
{
|
|
|
|
GstOnnxInference *self = GST_ONNX_INFERENCE (trans);
|
|
|
|
auto onnxClient = GST_ONNX_CLIENT_MEMBER (self);
|
|
|
|
|
|
|
|
GST_OBJECT_LOCK (self);
|
|
|
|
if (self->onnx_disabled) {
|
|
|
|
GST_OBJECT_UNLOCK (self);
|
|
|
|
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
if (onnxClient->hasSession ()) {
|
|
|
|
GST_OBJECT_UNLOCK (self);
|
|
|
|
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
if (self->model_file) {
|
|
|
|
gboolean ret =
|
|
|
|
GST_ONNX_CLIENT_MEMBER (self)->createSession (self->model_file,
|
|
|
|
self->optimization_level,
|
|
|
|
self->execution_provider);
|
|
|
|
if (!ret) {
|
|
|
|
GST_ERROR_OBJECT (self,
|
|
|
|
"Unable to create ONNX session. Model is disabled.");
|
|
|
|
self->onnx_disabled = TRUE;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
self->onnx_disabled = TRUE;
|
|
|
|
GST_ELEMENT_ERROR (self, STREAM, FAILED, (NULL), ("Model file not found"));
|
|
|
|
}
|
|
|
|
GST_OBJECT_UNLOCK (self);
|
|
|
|
if (self->onnx_disabled) {
|
|
|
|
gst_base_transform_set_passthrough (GST_BASE_TRANSFORM (self), TRUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static GstCaps *
|
|
|
|
gst_onnx_inference_transform_caps (GstBaseTransform *
|
|
|
|
trans, GstPadDirection direction, GstCaps * caps, GstCaps * filter_caps)
|
|
|
|
{
|
|
|
|
GstOnnxInference *self = GST_ONNX_INFERENCE (trans);
|
|
|
|
auto onnxClient = GST_ONNX_CLIENT_MEMBER (self);
|
|
|
|
GstCaps *other_caps;
|
|
|
|
guint i;
|
|
|
|
|
|
|
|
if (!gst_onnx_inference_create_session (trans))
|
|
|
|
return NULL;
|
|
|
|
GST_LOG_OBJECT (self, "transforming caps %" GST_PTR_FORMAT, caps);
|
|
|
|
|
|
|
|
if (gst_base_transform_is_passthrough (trans)
|
|
|
|
|| (!onnxClient->isFixedInputImageSize ()))
|
|
|
|
return gst_caps_ref (caps);
|
|
|
|
|
|
|
|
other_caps = gst_caps_new_empty ();
|
|
|
|
for (i = 0; i < gst_caps_get_size (caps); ++i) {
|
|
|
|
GstStructure *structure, *new_structure;
|
|
|
|
|
|
|
|
structure = gst_caps_get_structure (caps, i);
|
|
|
|
new_structure = gst_structure_copy (structure);
|
|
|
|
gst_structure_set (new_structure, "width", G_TYPE_INT,
|
|
|
|
onnxClient->getWidth (), "height", G_TYPE_INT,
|
|
|
|
onnxClient->getHeight (), NULL);
|
|
|
|
GST_LOG_OBJECT (self,
|
|
|
|
"transformed structure %2d: %" GST_PTR_FORMAT " => %"
|
|
|
|
GST_PTR_FORMAT, i, structure, new_structure);
|
|
|
|
gst_caps_append_structure (other_caps, new_structure);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!gst_caps_is_empty (other_caps) && filter_caps) {
|
|
|
|
GstCaps *tmp = gst_caps_intersect_full (other_caps, filter_caps,
|
|
|
|
GST_CAPS_INTERSECT_FIRST);
|
|
|
|
gst_caps_replace (&other_caps, tmp);
|
|
|
|
gst_caps_unref (tmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
return other_caps;
|
|
|
|
}
|
|
|
|
|
|
|
|
static gboolean
|
|
|
|
gst_onnx_inference_set_caps (GstBaseTransform * trans, GstCaps * incaps,
|
|
|
|
GstCaps * outcaps)
|
|
|
|
{
|
|
|
|
GstOnnxInference *self = GST_ONNX_INFERENCE (trans);
|
|
|
|
auto onnxClient = GST_ONNX_CLIENT_MEMBER (self);
|
|
|
|
|
|
|
|
if (!gst_video_info_from_caps (&self->video_info, incaps)) {
|
|
|
|
GST_ERROR_OBJECT (self, "Failed to parse caps");
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
onnxClient->parseDimensions (self->video_info);
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static GstFlowReturn
|
|
|
|
gst_onnx_inference_transform_ip (GstBaseTransform * trans, GstBuffer * buf)
|
|
|
|
{
|
|
|
|
if (!gst_base_transform_is_passthrough (trans)
|
|
|
|
&& !gst_onnx_inference_process (trans, buf)) {
|
|
|
|
GST_ELEMENT_ERROR (trans, STREAM, FAILED,
|
|
|
|
(NULL), ("ONNX inference failed"));
|
|
|
|
return GST_FLOW_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
return GST_FLOW_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
static gboolean
|
|
|
|
gst_onnx_inference_process (GstBaseTransform * trans, GstBuffer * buf)
|
|
|
|
{
|
|
|
|
GstMapInfo info;
|
|
|
|
if (gst_buffer_map (buf, &info, GST_MAP_READ)) {
|
|
|
|
GstOnnxInference *self = GST_ONNX_INFERENCE (trans);
|
|
|
|
try {
|
|
|
|
auto client = GST_ONNX_CLIENT_MEMBER (self);
|
|
|
|
auto outputs = client->run (info.data, self->video_info);
|
|
|
|
auto meta = client->copy_tensors_to_meta (outputs, buf);
|
|
|
|
if (!meta)
|
|
|
|
return FALSE;
|
2023-08-03 00:43:48 +00:00
|
|
|
GST_TRACE_OBJECT (trans, "Num tensors:%d", meta->num_tensors);
|
2023-06-26 14:55:53 +00:00
|
|
|
meta->batch_size = 1;
|
|
|
|
}
|
|
|
|
catch (Ort::Exception & ortex) {
|
|
|
|
GST_ERROR_OBJECT (self, "%s", ortex.what ());
|
2023-12-05 01:47:31 +00:00
|
|
|
gst_buffer_unmap (buf, &info);
|
2023-06-26 14:55:53 +00:00
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
gst_buffer_unmap (buf, &info);
|
|
|
|
}
|
|
|
|
|
|
|
|
return TRUE;
|
|
|
|
}
|