gstreamer/libs/idct/mmx32idct.c

784 lines
28 KiB
C
Raw Normal View History

/*
* idctmmx32.cpp
*
* Copyright (C) Alberto Vigata - January 2000 - ultraflask@yahoo.com
*
* This file is part of FlasKMPEG, a free MPEG to MPEG/AVI converter
*
* FlasKMPEG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* FlasKMPEG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
// MMX32 iDCT algorithm (IEEE-1180 compliant) :: idct_mmx32()
//
// MPEG2AVI
// --------
// v0.16B33 initial release
//
// This was one of the harder pieces of work to code.
// Intel's app-note focuses on the numerical issues of the algorithm, but
// assumes the programmer is familiar with IDCT mathematics, leaving the
// form of the complete function up to the programmer's imagination.
//
// ALGORITHM OVERVIEW
// ------------------
// I played around with the code for quite a few hours. I came up
// with *A* working IDCT algorithm, however I'm not sure whether my routine
// is "the correct one." But rest assured, my code passes all six IEEE
// accuracy tests with plenty of margin.
//
// My IDCT algorithm consists of 4 steps:
//
// 1) IDCT-row transformation (using the IDCT-row function) on all 8 rows
// This yields an intermediate 8x8 matrix.
//
// 2) intermediate matrix transpose (mandatory)
//
// 3) IDCT-row transformation (2nd time) on all 8 rows of the intermediate
// matrix. The output is the final-result, in transposed form.
//
// 4) post-transformation matrix transpose
// (not necessary if the input-data is already transposed, this could
// be done during the MPEG "zig-zag" scan, but since my algorithm
// requires at least one transpose operation, why not re-use the
// transpose-code.)
//
// Although the (1st) and (3rd) steps use the SAME row-transform operation,
// the (3rd) step uses different shift&round constants (explained later.)
//
// Also note that the intermediate transpose (2) would not be neccessary,
// if the subsequent operation were a iDCT-column transformation. Since
// we only have the iDCT-row transform, we transpose the intermediate
// matrix and use the iDCT-row transform a 2nd time.
//
// I had to change some constants/variables for my method to work :
//
// As given by Intel, the #defines for SHIFT_INV_COL and RND_INV_COL are
// wrong. Not surprising since I'm not using a true column-transform
// operation, but the row-transform operation (as mentioned earlier.)
// round_inv_col[], which is given as "4 short" values, should have the
// same dimensions as round_inv_row[]. The corrected variables are
// shown.
//
// Intel's code defines a different table for each each row operation.
// The tables given are 0/4, 1/7, 2/6, and 5/3. My code only uses row#0.
// Using the other rows messes up the overall transform.
//
// IMPLEMENTATION DETAILs
// ----------------------
//
// I divided the algorithm's work into two subroutines,
// 1) idct_mmx32_rows() - transforms 8 rows, then transpose
// 2) idct_mmx32_cols() - transforms 8 rows, then transpose
// yields final result ("drop-in" direct replacement for INT32 IDCT)
//
// The 2nd function is a clone of the 1st, with changes made only to the
// shift&rounding instructions.
//
// In the 1st function (rows), the shift & round instructions use
// SHIFT_INV_ROW & round_inv_row[] (renamed to r_inv_row[])
//
// In the 2nd function (cols)-> r_inv_col[], and
// SHIFT_INV_COL & round_inv_col[] (renamed to r_inv_col[])
//
// Each function contains an integrated transpose-operator, which comes
// AFTER the primary transformation operation. In the future, I'll optimize
// the code to do more of the transpose-work "in-place". Right now, I've
// left the code as two subroutines and a main calling function, so other
// people can read the code more easily.
//
// liaor@umcc.ais.org http://members.tripod.com/~liaor
//
//;=============================================================================
//;
//; AP-922 http://developer.intel.com/vtune/cbts/strmsimd
//; These examples contain code fragments for first stage iDCT 8x8
//; (for rows) and first stage DCT 8x8 (for columns)
//;
//;=============================================================================
/*
mword typedef qword
qword ptr equ mword ptr */
#include <mmx.h>
#define BITS_INV_ACC 4 //; 4 or 5 for IEEE
// 5 yields higher accuracy, but lessens dynamic range on the input matrix
#define SHIFT_INV_ROW (16 - BITS_INV_ACC)
#define SHIFT_INV_COL (1 + BITS_INV_ACC +14 ) // changed from Intel's val)
//#define SHIFT_INV_COL (1 + BITS_INV_ACC )
#define RND_INV_ROW (1 << (SHIFT_INV_ROW-1))
#define RND_INV_COL (1 << (SHIFT_INV_COL-1))
#define RND_INV_CORR (RND_INV_COL - 1) //; correction -1.0 and round
//#define RND_INV_ROW (1024 * (6 - BITS_INV_ACC)) //; 1 << (SHIFT_INV_ROW-1)
//#define RND_INV_COL (16 * (BITS_INV_ACC - 3)) //; 1 << (SHIFT_INV_COL-1)
//.data
//Align 16
const static long r_inv_row[2] = { RND_INV_ROW, RND_INV_ROW};
const static long r_inv_col[2] = {RND_INV_COL, RND_INV_COL};
const static long r_inv_corr[2] = {RND_INV_CORR, RND_INV_CORR };
//const static short r_inv_col[4] =
// {RND_INV_COL, RND_INV_COL, RND_INV_COL, RND_INV_COL};
//const static short r_inv_corr[4] =
// {RND_INV_CORR, RND_INV_CORR, RND_INV_CORR, RND_INV_CORR};
/* constants for the forward DCT
//#define BITS_FRW_ACC 3 //; 2 or 3 for accuracy
//#define SHIFT_FRW_COL BITS_FRW_ACC
//#define SHIFT_FRW_ROW (BITS_FRW_ACC + 17)
//#define RND_FRW_ROW (262144 * (BITS_FRW_ACC - 1)) //; 1 << (SHIFT_FRW_ROW-1)
const static __int64 one_corr = 0x0001000100010001;
const static long r_frw_row[2] = {RND_FRW_ROW, RND_FRW_ROW };
//const static short tg_1_16[4] = {13036, 13036, 13036, 13036 }; //tg * (2<<16) + 0.5
//const static short tg_2_16[4] = {27146, 27146, 27146, 27146 }; //tg * (2<<16) + 0.5
//const static short tg_3_16[4] = {-21746, -21746, -21746, -21746 }; //tg * (2<<16) + 0.5
//const static short cos_4_16[4] = {-19195, -19195, -19195, -19195 }; //cos * (2<<16) + 0.5
//const static short ocos_4_16[4] = {23170, 23170, 23170, 23170 }; //cos * (2<<15) + 0.5
//concatenated table, for forward DCT transformation
const static short tg_all_16[] = {
13036, 13036, 13036, 13036, // tg * (2<<16) + 0.5
27146, 27146, 27146, 27146, //tg * (2<<16) + 0.5
-21746, -21746, -21746, -21746, // tg * (2<<16) + 0.5
-19195, -19195, -19195, -19195, //cos * (2<<16) + 0.5
23170, 23170, 23170, 23170 }; //cos * (2<<15) + 0.5
#define tg_1_16 (tg_all_16 + 0)
#define tg_2_16 (tg_all_16 + 8)
#define tg_3_16 (tg_all_16 + 16)
#define cos_4_16 (tg_all_16 + 24)
#define ocos_4_16 (tg_all_16 + 32)
*/
/*
;=============================================================================
;
; The first stage iDCT 8x8 - inverse DCTs of rows
;
;-----------------------------------------------------------------------------
; The 8-point inverse DCT direct algorithm
;-----------------------------------------------------------------------------
;
; static const short w[32] = {
; FIX(cos_4_16), FIX(cos_2_16), FIX(cos_4_16), FIX(cos_6_16),
; FIX(cos_4_16), FIX(cos_6_16), -FIX(cos_4_16), -FIX(cos_2_16),
; FIX(cos_4_16), -FIX(cos_6_16), -FIX(cos_4_16), FIX(cos_2_16),
; FIX(cos_4_16), -FIX(cos_2_16), FIX(cos_4_16), -FIX(cos_6_16),
; FIX(cos_1_16), FIX(cos_3_16), FIX(cos_5_16), FIX(cos_7_16),
; FIX(cos_3_16), -FIX(cos_7_16), -FIX(cos_1_16), -FIX(cos_5_16),
; FIX(cos_5_16), -FIX(cos_1_16), FIX(cos_7_16), FIX(cos_3_16),
; FIX(cos_7_16), -FIX(cos_5_16), FIX(cos_3_16), -FIX(cos_1_16) };
;
; #define DCT_8_INV_ROW(x, y)
;{
; int a0, a1, a2, a3, b0, b1, b2, b3;
;
; a0 =x[0]*w[0]+x[2]*w[1]+x[4]*w[2]+x[6]*w[3];
; a1 =x[0]*w[4]+x[2]*w[5]+x[4]*w[6]+x[6]*w[7];
; a2 = x[0] * w[ 8] + x[2] * w[ 9] + x[4] * w[10] + x[6] * w[11];
; a3 = x[0] * w[12] + x[2] * w[13] + x[4] * w[14] + x[6] * w[15];
; b0 = x[1] * w[16] + x[3] * w[17] + x[5] * w[18] + x[7] * w[19];
; b1 = x[1] * w[20] + x[3] * w[21] + x[5] * w[22] + x[7] * w[23];
; b2 = x[1] * w[24] + x[3] * w[25] + x[5] * w[26] + x[7] * w[27];
; b3 = x[1] * w[28] + x[3] * w[29] + x[5] * w[30] + x[7] * w[31];
;
; y[0] = SHIFT_ROUND ( a0 + b0 );
; y[1] = SHIFT_ROUND ( a1 + b1 );
; y[2] = SHIFT_ROUND ( a2 + b2 );
; y[3] = SHIFT_ROUND ( a3 + b3 );
; y[4] = SHIFT_ROUND ( a3 - b3 );
; y[5] = SHIFT_ROUND ( a2 - b2 );
; y[6] = SHIFT_ROUND ( a1 - b1 );
; y[7] = SHIFT_ROUND ( a0 - b0 );
;}
;
;-----------------------------------------------------------------------------
;
; In this implementation the outputs of the iDCT-1D are multiplied
; for rows 0,4 - by cos_4_16,
; for rows 1,7 - by cos_1_16,
; for rows 2,6 - by cos_2_16,
; for rows 3,5 - by cos_3_16
; and are shifted to the left for better accuracy
;
; For the constants used,
; FIX(float_const) = (short) (float_const * (1<<15) + 0.5)
;
;=============================================================================
;=============================================================================
IF _MMX ; MMX code
;=============================================================================
//; Table for rows 0,4 - constants are multiplied by cos_4_16
const short tab_i_04[] = {
16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00
21407, 8867, 8867, -21407, // w07 w05 w03 w01
16384, -16384, 16384, 16384, //; w14 w12 w10 w08
-8867, 21407, -21407, -8867, //; w15 w13 w11 w09
22725, 12873, 19266, -22725, //; w22 w20 w18 w16
19266, 4520, -4520, -12873, //; w23 w21 w19 w17
12873, 4520, 4520, 19266, //; w30 w28 w26 w24
-22725, 19266, -12873, -22725 };//w31 w29 w27 w25
//; Table for rows 1,7 - constants are multiplied by cos_1_16
const short tab_i_17[] = {
22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00
29692, 12299, 12299, -29692, // ; w07 w05 w03 w01
22725, -22725, 22725, 22725, //; w14 w12 w10 w08
-12299, 29692, -29692, -12299, //; w15 w13 w11 w09
31521, 17855, 26722, -31521, //; w22 w20 w18 w16
26722, 6270, -6270, -17855, //; w23 w21 w19 w17
17855, 6270, 6270, 26722, //; w30 w28 w26 w24
-31521, 26722, -17855, -31521}; // w31 w29 w27 w25
//; Table for rows 2,6 - constants are multiplied by cos_2_16
const short tab_i_26[] = {
21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00
27969, 11585, 11585, -27969, // ; w07 w05 w03 w01
21407, -21407, 21407, 21407, // ; w14 w12 w10 w08
-11585, 27969, -27969, -11585, // ;w15 w13 w11 w09
29692, 16819, 25172, -29692, // ;w22 w20 w18 w16
25172, 5906, -5906, -16819, // ;w23 w21 w19 w17
16819, 5906, 5906, 25172, // ;w30 w28 w26 w24
-29692, 25172, -16819, -29692}; // ;w31 w29 w27 w25
//; Table for rows 3,5 - constants are multiplied by cos_3_16
const short tab_i_35[] = {
19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00
25172, 10426, 10426, -25172, //; w07 w05 w03 w01
19266, -19266, 19266, 19266, //; w14 w12 w10 w08
-10426, 25172, -25172, -10426, //; w15 w13 w11 w09
26722, 15137, 22654, -26722, //; w22 w20 w18 w16
22654, 5315, -5315, -15137, //; w23 w21 w19 w17
15137, 5315, 5315, 22654, //; w30 w28 w26 w24
-26722, 22654, -15137, -26722}; //; w31 w29 w27 w25
*/
// CONCATENATED TABLE, rows 0,1,2,3,4,5,6,7 (in order )
//
// In our implementation, however, we only use row0 !
//
static const short tab_i_01234567[] = {
//row0, this row is required
16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00
21407, 8867, 8867, -21407, // w07 w05 w03 w01
16384, -16384, 16384, 16384, //; w14 w12 w10 w08
-8867, 21407, -21407, -8867, //; w15 w13 w11 w09
22725, 12873, 19266, -22725, //; w22 w20 w18 w16
19266, 4520, -4520, -12873, //; w23 w21 w19 w17
12873, 4520, 4520, 19266, //; w30 w28 w26 w24
-22725, 19266, -12873, -22725, //w31 w29 w27 w25
// the rest of these rows (1-7), aren't used !
//row1
22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00
29692, 12299, 12299, -29692, // ; w07 w05 w03 w01
22725, -22725, 22725, 22725, //; w14 w12 w10 w08
-12299, 29692, -29692, -12299, //; w15 w13 w11 w09
31521, 17855, 26722, -31521, //; w22 w20 w18 w16
26722, 6270, -6270, -17855, //; w23 w21 w19 w17
17855, 6270, 6270, 26722, //; w30 w28 w26 w24
-31521, 26722, -17855, -31521, // w31 w29 w27 w25
//row2
21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00
27969, 11585, 11585, -27969, // ; w07 w05 w03 w01
21407, -21407, 21407, 21407, // ; w14 w12 w10 w08
-11585, 27969, -27969, -11585, // ;w15 w13 w11 w09
29692, 16819, 25172, -29692, // ;w22 w20 w18 w16
25172, 5906, -5906, -16819, // ;w23 w21 w19 w17
16819, 5906, 5906, 25172, // ;w30 w28 w26 w24
-29692, 25172, -16819, -29692, // ;w31 w29 w27 w25
//row3
19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00
25172, 10426, 10426, -25172, //; w07 w05 w03 w01
19266, -19266, 19266, 19266, //; w14 w12 w10 w08
-10426, 25172, -25172, -10426, //; w15 w13 w11 w09
26722, 15137, 22654, -26722, //; w22 w20 w18 w16
22654, 5315, -5315, -15137, //; w23 w21 w19 w17
15137, 5315, 5315, 22654, //; w30 w28 w26 w24
-26722, 22654, -15137, -26722, //; w31 w29 w27 w25
//row4
16384, 16384, 16384, -16384, // ; movq-> w06 w04 w02 w00
21407, 8867, 8867, -21407, // w07 w05 w03 w01
16384, -16384, 16384, 16384, //; w14 w12 w10 w08
-8867, 21407, -21407, -8867, //; w15 w13 w11 w09
22725, 12873, 19266, -22725, //; w22 w20 w18 w16
19266, 4520, -4520, -12873, //; w23 w21 w19 w17
12873, 4520, 4520, 19266, //; w30 w28 w26 w24
-22725, 19266, -12873, -22725, //w31 w29 w27 w25
//row5
19266, 19266, 19266, -19266, //; movq-> w06 w04 w02 w00
25172, 10426, 10426, -25172, //; w07 w05 w03 w01
19266, -19266, 19266, 19266, //; w14 w12 w10 w08
-10426, 25172, -25172, -10426, //; w15 w13 w11 w09
26722, 15137, 22654, -26722, //; w22 w20 w18 w16
22654, 5315, -5315, -15137, //; w23 w21 w19 w17
15137, 5315, 5315, 22654, //; w30 w28 w26 w24
-26722, 22654, -15137, -26722, //; w31 w29 w27 w25
//row6
21407, 21407, 21407, -21407, // ; movq-> w06 w04 w02 w00
27969, 11585, 11585, -27969, // ; w07 w05 w03 w01
21407, -21407, 21407, 21407, // ; w14 w12 w10 w08
-11585, 27969, -27969, -11585, // ;w15 w13 w11 w09
29692, 16819, 25172, -29692, // ;w22 w20 w18 w16
25172, 5906, -5906, -16819, // ;w23 w21 w19 w17
16819, 5906, 5906, 25172, // ;w30 w28 w26 w24
-29692, 25172, -16819, -29692, // ;w31 w29 w27 w25
//row7
22725, 22725, 22725, -22725, // ; movq-> w06 w04 w02 w00
29692, 12299, 12299, -29692, // ; w07 w05 w03 w01
22725, -22725, 22725, 22725, //; w14 w12 w10 w08
-12299, 29692, -29692, -12299, //; w15 w13 w11 w09
31521, 17855, 26722, -31521, //; w22 w20 w18 w16
26722, 6270, -6270, -17855, //; w23 w21 w19 w17
17855, 6270, 6270, 26722, //; w30 w28 w26 w24
-31521, 26722, -17855, -31521}; // w31 w29 w27 w25
#define INP eax // pointer to (short *blk)
#define OUT ecx // pointer to output (temporary store space qwTemp[])
#define TABLE ebx // pointer to tab_i_01234567[]
#define round_inv_row edx
#define round_inv_col edx
#define ROW_STRIDE 8 // for 8x8 matrix transposer
// private variables and functions
//temporary storage space, 8x8 of shorts
__inline static void idct_mmx32_rows( short *blk ); // transform rows
__inline static void idct_mmx32_cols( short *blk ); // transform "columns"
// the "column" transform actually transforms rows, it is
// identical to the row-transform except for the ROUNDING
// and SHIFTING coefficients.
static void
idct_mmx32_rows( short *blk ) // transform all 8 rows of 8x8 iDCT block
{
int x;
short qwTemp[64];
short *out = &qwTemp[0];
short *inptr = blk;
// this subroutine performs two operations
// 1) iDCT row transform
// for( i = 0; i < 8; ++ i)
// DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] );
//
// 2) transpose the matrix (which was stored in qwTemp[])
// qwTemp[] -> [8x8 matrix transpose] -> blk[]
for (x=0; x<8; x++) { // transform one row per iteration
movq_m2r(*(inptr), mm0); // 0 ; x3 x2 x1 x0
movq_m2r(*(inptr+4), mm1); // 1 ; x7 x6 x5 x4
movq_r2r(mm0, mm2); // 2 ; x3 x2 x1 x0
movq_m2r(*(tab_i_01234567), mm3); // 3 ; w06 w04 w02 w00
punpcklwd_r2r(mm1, mm0); // x5 x1 x4 x0
// ----------
movq_r2r(mm0, mm5); // 5 ; x5 x1 x4 x0
punpckldq_r2r(mm0, mm0); // x4 x0 x4 x0
movq_m2r(*(tab_i_01234567+4), mm4); // 4 ; w07 w05 w03 w01
punpckhwd_r2r(mm1, mm2); // 1 ; x7 x3 x6 x2
pmaddwd_r2r(mm0, mm3); // x4*w06+x0*w04 x4*w02+x0*w00
movq_r2r(mm2, mm6); // 6 ; x7 x3 x6 x2
movq_m2r(*(tab_i_01234567+16), mm1);// 1 ; w22 w20 w18 w16
punpckldq_r2r(mm2, mm2); // x6 x2 x6 x2
pmaddwd_r2r(mm2, mm4); // x6*w07+x2*w05 x6*w03+x2*w01
punpckhdq_r2r(mm5, mm5); // x5 x1 x5 x1
pmaddwd_m2r(*(tab_i_01234567+8), mm0);// x4*w14+x0*w12 x4*w10+x0*w08
punpckhdq_r2r(mm6, mm6); // x7 x3 x7 x3
movq_m2r(*(tab_i_01234567+20), mm7);// 7 ; w23 w21 w19 w17
pmaddwd_r2r(mm5, mm1); // x5*w22+x1*w20 x5*w18+x1*w16
paddd_m2r(*(r_inv_row), mm3);// +rounder
pmaddwd_r2r(mm6, mm7); // x7*w23+x3*w21 x7*w19+x3*w17
pmaddwd_m2r(*(tab_i_01234567+12), mm2);// x6*w15+x2*w13 x6*w11+x2*w09
paddd_r2r(mm4, mm3); // 4 ; a1=sum(even1) a0=sum(even0)
pmaddwd_m2r(*(tab_i_01234567+24), mm5);// x5*w30+x1*w28 x5*w26+x1*w24
movq_r2r(mm3, mm4); // 4 ; a1 a0
pmaddwd_m2r(*(tab_i_01234567+28), mm6);// x7*w31+x3*w29 x7*w27+x3*w25
paddd_r2r(mm7, mm1); // 7 ; b1=sum(odd1) b0=sum(odd0)
paddd_m2r(*(r_inv_row), mm0);// +rounder
psubd_r2r(mm1, mm3); // a1-b1 a0-b0
psrad_i2r(SHIFT_INV_ROW, mm3); // y6=a1-b1 y7=a0-b0
paddd_r2r(mm4, mm1); // 4 ; a1+b1 a0+b0
paddd_r2r(mm2, mm0); // 2 ; a3=sum(even3) a2=sum(even2)
psrad_i2r(SHIFT_INV_ROW, mm1); // y1=a1+b1 y0=a0+b0
paddd_r2r(mm6, mm5); // 6 ; b3=sum(odd3) b2=sum(odd2)
movq_r2r(mm0, mm4); // 4 ; a3 a2
paddd_r2r(mm5, mm0); // a3+b3 a2+b2
psubd_r2r(mm5, mm4); // 5 ; a3-b3 a2-b2
psrad_i2r(SHIFT_INV_ROW, mm4); // y4=a3-b3 y5=a2-b2
psrad_i2r(SHIFT_INV_ROW, mm0); // y3=a3+b3 y2=a2+b2
packssdw_r2r(mm3, mm4); // 3 ; y6 y7 y4 y5
packssdw_r2r(mm0, mm1); // 0 ; y3 y2 y1 y0
movq_r2r(mm4, mm7); // 7 ; y6 y7 y4 y5
psrld_i2r(16, mm4); // 0 y6 0 y4
movq_r2m(mm1, *(out)); // 1 ; save y3 y2 y1 y0
pslld_i2r(16, mm7); // y7 0 y5 0
por_r2r(mm4, mm7); // 4 ; y7 y6 y5 y4
// begin processing row 1
movq_r2m(mm7, *(out+4)); // 7 ; save y7 y6 y5 y4
inptr += 8;
out += 8;
}
// done with the iDCT row-transformation
// now we have to transpose the output 8x8 matrix
// 8x8 (OUT) -> 8x8't' (IN)
// the transposition is implemented as 4 sub-operations.
// 1) transpose upper-left quad
// 2) transpose lower-right quad
// 3) transpose lower-left quad
// 4) transpose upper-right quad
// mm0 = 1st row [ A B C D ] row1
// mm1 = 2nd row [ E F G H ] 2
// mm2 = 3rd row [ I J K L ] 3
// mm3 = 4th row [ M N O P ] 4
// 1) transpose upper-left quad
out = &qwTemp[0];
movq_m2r(*(out + ROW_STRIDE * 0), mm0);
movq_m2r(*(out + ROW_STRIDE * 1), mm1);
movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
movq_m2r(*(out + ROW_STRIDE * 2), mm2);
punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
movq_m2r(*(out + ROW_STRIDE * 3), mm3);
punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
movq_r2r(mm2, mm6);
punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
inptr = blk;
punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
movq_r2m(mm0, *(inptr + ROW_STRIDE * 0)); // store row 1
punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
// begin reading next quadrant (lower-right)
movq_m2r(*(out + ROW_STRIDE*4 + 4), mm0);
punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
movq_r2m(mm4, *(inptr + ROW_STRIDE * 2)); // store row 3
movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
movq_r2m(mm1, *(inptr + ROW_STRIDE * 1)); // store row 2
movq_m2r(*(out + ROW_STRIDE*5 + 4), mm1);
movq_r2m(mm3, *(inptr + ROW_STRIDE * 3)); // store row 4
punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
// 2) transpose lower-right quadrant
// movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8]
// movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8]
// movq mm4, mm0; // mm4 = copy of row1[A B C D]
movq_m2r(*(out + ROW_STRIDE*6 + 4), mm2);
// punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
movq_m2r(*(out + ROW_STRIDE*7 + 4), mm3);
movq_r2r(mm2, mm6);
punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
; // slot
movq_r2m(mm0, *(inptr + ROW_STRIDE*4 + 4)); // store row 1
punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
movq_m2r(*(out + ROW_STRIDE * 4 ), mm0);
punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
movq_r2m(mm4, *(inptr + ROW_STRIDE*6 + 4)); // store row 3
movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
movq_r2m(mm1, *(inptr + ROW_STRIDE*5 + 4)); // store row 2
; // slot
movq_m2r(*(out + ROW_STRIDE * 5 ), mm1);
; // slot
movq_r2m(mm3, *(inptr + ROW_STRIDE*7 + 4)); // store row 4
punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
// 3) transpose lower-left
// movq mm0, qword ptr [OUT + ROW_STRIDE * 4 ]
// movq mm1, qword ptr [OUT + ROW_STRIDE * 5 ]
// movq mm4, mm0; // mm4 = copy of row1[A B C D]
movq_m2r(*(out + ROW_STRIDE * 6 ), mm2);
// punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
movq_m2r(*(out + ROW_STRIDE * 7 ), mm3);
movq_r2r(mm2, mm6);
punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
;//slot
movq_r2m(mm0, *(inptr + ROW_STRIDE * 0 + 4 )); // store row 1
punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
// begin reading next quadrant (upper-right)
movq_m2r(*(out + ROW_STRIDE*0 + 4), mm0);
punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
movq_r2m(mm4, *(inptr + ROW_STRIDE * 2 + 4)); // store row 3
movq_r2r(mm0, mm4); // mm4 = copy of row1[A B C D]
movq_r2m(mm1, *(inptr + ROW_STRIDE * 1 + 4)); // store row 2
movq_m2r(*(out + ROW_STRIDE*1 + 4), mm1);
movq_r2m(mm3, *(inptr + ROW_STRIDE * 3 + 4)); // store row 4
punpcklwd_r2r(mm1, mm0); // mm0 = [ 0 4 1 5]
// 2) transpose lower-right quadrant
// movq mm0, qword ptr [OUT + ROW_STRIDE*4 + 8]
// movq mm1, qword ptr [OUT + ROW_STRIDE*5 + 8]
// movq mm4, mm0; // mm4 = copy of row1[A B C D]
movq_m2r(*(out + ROW_STRIDE*2 + 4), mm2);
// punpcklwd mm0, mm1; // mm0 = [ 0 4 1 5]
punpckhwd_r2r(mm1, mm4); // mm4 = [ 2 6 3 7]
movq_m2r(*(out + ROW_STRIDE*3 + 4), mm3);
movq_r2r(mm2, mm6);
punpcklwd_r2r(mm3, mm2); // mm2 = [ 8 12 9 13]
movq_r2r(mm0, mm1); // mm1 = [ 0 4 1 5]
punpckhwd_r2r(mm3, mm6); // mm6 = 10 14 11 15]
movq_r2r(mm4, mm3); // mm3 = [ 2 6 3 7]
punpckldq_r2r(mm2, mm0); // final result mm0 = row1 [0 4 8 12]
punpckhdq_r2r(mm2, mm1); // mm1 = final result mm1 = row2 [1 5 9 13]
; // slot
movq_r2m(mm0, *(inptr + ROW_STRIDE*4)); // store row 1
punpckldq_r2r(mm6, mm4); // final result mm4 = row3 [2 6 10 14]
movq_r2m(mm1, *(inptr + ROW_STRIDE*5)); // store row 2
punpckhdq_r2r(mm6, mm3); // final result mm3 = row4 [3 7 11 15]
movq_r2m(mm4, *(inptr + ROW_STRIDE*6)); // store row 3
; // slot
movq_r2m(mm3, *(inptr + ROW_STRIDE*7)); // store row 4
; // slot
}
static void
idct_mmx32_cols( short *blk ) // transform all 8 cols of 8x8 iDCT block
{
int x;
short *inptr = blk;
// Despite the function's name, the matrix is transformed
// row by row. This function is identical to idct_mmx32_rows(),
// except for the SHIFT amount and ROUND_INV amount.
// this subroutine performs two operations
// 1) iDCT row transform
// for( i = 0; i < 8; ++ i)
// DCT_8_INV_ROW_1( blk[i*8], qwTemp[i] );
//
// 2) transpose the matrix (which was stored in qwTemp[])
// qwTemp[] -> [8x8 matrix transpose] -> blk[]
for (x=0; x<8; x++) { // transform one row per iteration
movq_m2r(*(inptr), mm0); // 0 ; x3 x2 x1 x0
movq_m2r(*(inptr+4), mm1); // 1 ; x7 x6 x5 x4
movq_r2r(mm0, mm2); // 2 ; x3 x2 x1 x0
movq_m2r(*(tab_i_01234567), mm3); // 3 ; w06 w04 w02 w00
punpcklwd_r2r(mm1, mm0); // x5 x1 x4 x0
// ----------
movq_r2r(mm0, mm5); // 5 ; x5 x1 x4 x0
punpckldq_r2r(mm0, mm0); // x4 x0 x4 x0
movq_m2r(*(tab_i_01234567+4), mm4); // 4 ; w07 w05 w03 w01
punpckhwd_r2r(mm1, mm2); // 1 ; x7 x3 x6 x2
pmaddwd_r2r(mm0, mm3); // x4*w06+x0*w04 x4*w02+x0*w00
movq_r2r(mm2, mm6); // 6 ; x7 x3 x6 x2
movq_m2r(*(tab_i_01234567+16), mm1);// 1 ; w22 w20 w18 w16
punpckldq_r2r(mm2, mm2); // x6 x2 x6 x2
pmaddwd_r2r(mm2, mm4); // x6*w07+x2*w05 x6*w03+x2*w01
punpckhdq_r2r(mm5, mm5); // x5 x1 x5 x1
pmaddwd_m2r(*(tab_i_01234567+8), mm0);// x4*w14+x0*w12 x4*w10+x0*w08
punpckhdq_r2r(mm6, mm6); // x7 x3 x7 x3
movq_m2r(*(tab_i_01234567+20), mm7);// 7 ; w23 w21 w19 w17
pmaddwd_r2r(mm5, mm1); // x5*w22+x1*w20 x5*w18+x1*w16
paddd_m2r(*(r_inv_col), mm3);// +rounder
pmaddwd_r2r(mm6, mm7); // x7*w23+x3*w21 x7*w19+x3*w17
pmaddwd_m2r(*(tab_i_01234567+12), mm2);// x6*w15+x2*w13 x6*w11+x2*w09
paddd_r2r(mm4, mm3); // 4 ; a1=sum(even1) a0=sum(even0)
pmaddwd_m2r(*(tab_i_01234567+24), mm5);// x5*w30+x1*w28 x5*w26+x1*w24
movq_r2r(mm3, mm4); // 4 ; a1 a0
pmaddwd_m2r(*(tab_i_01234567+28), mm6);// x7*w31+x3*w29 x7*w27+x3*w25
paddd_r2r(mm7, mm1); // 7 ; b1=sum(odd1) b0=sum(odd0)
paddd_m2r(*(r_inv_col), mm0);// +rounder
psubd_r2r(mm1, mm3); // a1-b1 a0-b0
psrad_i2r(SHIFT_INV_COL, mm3); // y6=a1-b1 y7=a0-b0
paddd_r2r(mm4, mm1); // 4 ; a1+b1 a0+b0
paddd_r2r(mm2, mm0); // 2 ; a3=sum(even3) a2=sum(even2)
psrad_i2r(SHIFT_INV_COL, mm1); // y1=a1+b1 y0=a0+b0
paddd_r2r(mm6, mm5); // 6 ; b3=sum(odd3) b2=sum(odd2)
movq_r2r(mm0, mm4); // 4 ; a3 a2
paddd_r2r(mm5, mm0); // a3+b3 a2+b2
psubd_r2r(mm5, mm4); // 5 ; a3-b3 a2-b2
psrad_i2r(SHIFT_INV_COL, mm4); // y4=a3-b3 y5=a2-b2
psrad_i2r(SHIFT_INV_COL, mm0); // y3=a3+b3 y2=a2+b2
packssdw_r2r(mm3, mm4); // 3 ; y6 y7 y4 y5
packssdw_r2r(mm0, mm1); // 0 ; y3 y2 y1 y0
movq_r2r(mm4, mm7); // 7 ; y6 y7 y4 y5
psrld_i2r(16, mm4); // 0 y6 0 y4
movq_r2m(mm1, *(inptr)); // 1 ; save y3 y2 y1 y0
pslld_i2r(16, mm7); // y7 0 y5 0
por_r2r(mm4, mm7); // 4 ; y7 y6 y5 y4
// begin processing row 1
movq_r2m(mm7, *(inptr+4)); // 7 ; save y7 y6 y5 y4
inptr += 8;
}
// done with the iDCT column-transformation
}
//
// public interface to MMX32 IDCT 8x8 operation
//
void
gst_idct_mmx32_idct( short *blk )
{
// 1) iDCT row transformation
idct_mmx32_rows( blk ); // 1) transform iDCT row, and transpose
// 2) iDCT column transformation
idct_mmx32_cols( blk ); // 2) transform iDCT row, and transpose
emms(); // restore processor state
// all done
}