gstreamer/subprojects/gst-plugins-base/gst-libs/gst/audio/gstdsd.c

1072 lines
35 KiB
C
Raw Normal View History

/* GStreamer
* Copyright (C) 2023 Carlos Rafael Giani <crg7475@mailbox.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <string.h>
#include "gstdsd.h"
#ifndef GST_DISABLE_GST_DEBUG
#define GST_CAT_DEFAULT ensure_debug_category()
static GstDebugCategory *
ensure_debug_category (void)
{
static gsize cat_gonce = 0;
if (g_once_init_enter (&cat_gonce)) {
gsize cat_done;
cat_done = (gsize) _gst_debug_category_new ("gst-dsd", 0, "GStreamer DSD");
g_once_init_leave (&cat_gonce, cat_done);
}
return (GstDebugCategory *) cat_gonce;
}
#else
#define ensure_debug_category() /* NOOP */
#endif /* GST_DISABLE_GST_DEBUG */
static const guint8 byte_bit_reversal_table[256] = {
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
};
static const char *
layout_to_string (GstAudioLayout layout)
{
const char *layout_str = NULL;
switch (layout) {
case GST_AUDIO_LAYOUT_INTERLEAVED:
layout_str = "interleaved";
break;
case GST_AUDIO_LAYOUT_NON_INTERLEAVED:
layout_str = "non-interleaved";
break;
default:
g_return_val_if_reached (NULL);
}
return layout_str;
}
static gboolean
gst_dsd_plane_offset_meta_init (GstMeta * meta, gpointer params,
GstBuffer * buffer)
{
GstDsdPlaneOffsetMeta *ofs_meta = (GstDsdPlaneOffsetMeta *) meta;
ofs_meta->offsets = NULL;
return TRUE;
}
static void
gst_dsd_plane_offset_meta_free (GstMeta * meta, GstBuffer * buffer)
{
GstDsdPlaneOffsetMeta *ofs_meta = (GstDsdPlaneOffsetMeta *) meta;
if (ofs_meta->offsets && ofs_meta->offsets != ofs_meta->priv_offsets_arr)
g_free (ofs_meta->offsets);
}
static gboolean
gst_dsd_plane_offset_meta_transform (GstBuffer * dest, GstMeta * meta,
GstBuffer * buffer, GQuark type, gpointer data)
{
GstDsdPlaneOffsetMeta *smeta, *dmeta;
smeta = (GstDsdPlaneOffsetMeta *) meta;
if (GST_META_TRANSFORM_IS_COPY (type)) {
dmeta = gst_buffer_add_dsd_plane_offset_meta (dest, smeta->num_channels,
smeta->num_bytes_per_channel, smeta->offsets);
if (!dmeta)
return FALSE;
} else {
/* return FALSE, if transform type is not supported */
return FALSE;
}
return TRUE;
}
GType
gst_dsd_plane_offset_meta_api_get_type (void)
{
static GType type;
static const gchar *tags[] = {
GST_META_TAG_AUDIO_STR,
GST_META_TAG_DSD_PLANE_OFFSETS_STR,
NULL
};
if (g_once_init_enter (&type)) {
GType _type = gst_meta_api_type_register ("GstDsdPlaneOffsetMetaAPI", tags);
g_once_init_leave (&type, _type);
}
return type;
}
const GstMetaInfo *
gst_dsd_plane_offset_meta_get_info (void)
{
static const GstMetaInfo *dsd_plane_offset_meta_info = NULL;
if (g_once_init_enter ((GstMetaInfo **) & dsd_plane_offset_meta_info)) {
const GstMetaInfo *meta =
gst_meta_register (GST_DSD_PLANE_OFFSET_META_API_TYPE,
"GstDsdPlaneOffsetMeta",
sizeof (GstDsdPlaneOffsetMeta),
gst_dsd_plane_offset_meta_init,
gst_dsd_plane_offset_meta_free,
gst_dsd_plane_offset_meta_transform);
g_once_init_leave ((GstMetaInfo **) & dsd_plane_offset_meta_info,
(GstMetaInfo *) meta);
}
return dsd_plane_offset_meta_info;
}
/**
* gst_buffer_add_dsd_plane_offset_meta:
* @buffer: a #GstBuffer
* @num_channels: Number of channels in the DSD data
* @num_bytes_per_channel: Number of bytes per channel
* @offsets: (nullable): the offsets (in bytes) where each channel plane starts
* in the buffer
*
* Allocates and attaches a #GstDsdPlaneOffsetMeta on @buffer, which must be
* writable for that purpose. The fields of the #GstDsdPlaneOffsetMeta are
* directly populated from the arguments of this function.
*
* If @offsets is NULL, then the meta's offsets field is left uninitialized.
* This is useful if for example offset values are to be calculated in the
* meta's offsets field in-place. Similarly, @num_bytes_per_channel can be
* set to 0, but only if @offsets is NULL. This is useful if the number of
* bytes per channel is known only later.
*
* It is not allowed for channels to overlap in memory,
* i.e. for each i in [0, channels), the range
* [@offsets[i], @offsets[i] + @num_bytes_per_channel) must not overlap
* with any other such range. This function will assert if the parameters
* specified cause this restriction to be violated.
*
* It is, obviously, also not allowed to specify parameters that would cause
* out-of-bounds memory access on @buffer. This is also checked, which means
* that you must add enough memory on the @buffer before adding this meta.
*
* This meta is only needed for non-interleaved (= planar) DSD data.
*
* Returns: (transfer none): the #GstDsdPlaneOffsetMeta that was attached
* on the @buffer
*
* Since: 1.24
*/
GstDsdPlaneOffsetMeta *
gst_buffer_add_dsd_plane_offset_meta (GstBuffer * buffer, gint num_channels,
gsize num_bytes_per_channel, gsize offsets[])
{
GstDsdPlaneOffsetMeta *meta;
gint i;
#ifndef G_DISABLE_CHECKS
gsize max_offset = 0;
gint j;
#endif
g_return_val_if_fail (GST_IS_BUFFER (buffer), NULL);
g_return_val_if_fail (num_channels >= 1, NULL);
g_return_val_if_fail (!offsets || (num_bytes_per_channel >= 1), NULL);
meta = (GstDsdPlaneOffsetMeta *) gst_buffer_add_meta (buffer,
GST_DSD_PLANE_OFFSET_META_INFO, NULL);
meta->num_channels = num_channels;
meta->num_bytes_per_channel = num_bytes_per_channel;
if (G_UNLIKELY (num_channels > 8))
meta->offsets = g_new (gsize, num_channels);
else
meta->offsets = meta->priv_offsets_arr;
if (offsets) {
for (i = 0; i < num_channels; i++) {
meta->offsets[i] = offsets[i];
#ifndef G_DISABLE_CHECKS
max_offset = MAX (max_offset, offsets[i]);
for (j = 0; j < num_channels; j++) {
if (i != j && !(offsets[j] + num_bytes_per_channel <= offsets[i]
|| offsets[i] + num_bytes_per_channel <= offsets[j])) {
g_critical ("GstDsdPlaneOffsetMeta properties would cause channel "
"memory areas to overlap! offsets: %" G_GSIZE_FORMAT " (%d), %"
G_GSIZE_FORMAT " (%d) with %" G_GSIZE_FORMAT " bytes per channel",
offsets[i], i, offsets[j], j, num_bytes_per_channel);
gst_buffer_remove_meta (buffer, (GstMeta *) meta);
return NULL;
}
}
#endif
}
#ifndef G_DISABLE_CHECKS
if (max_offset + num_bytes_per_channel > gst_buffer_get_size (buffer)) {
g_critical ("GstDsdPlaneOffsetMeta properties would cause "
"out-of-bounds memory access on the buffer: max_offset %"
G_GSIZE_FORMAT ", %" G_GSIZE_FORMAT " bytes per channel, "
"buffer size %" G_GSIZE_FORMAT, max_offset, num_bytes_per_channel,
gst_buffer_get_size (buffer));
gst_buffer_remove_meta (buffer, (GstMeta *) meta);
return NULL;
}
#endif
}
return meta;
}
G_DEFINE_BOXED_TYPE (GstDsdInfo, gst_dsd_info,
(GBoxedCopyFunc) gst_dsd_info_copy, (GBoxedFreeFunc) gst_dsd_info_free);
/**
* gst_dsd_info_new:
*
* Allocate a new #GstDsdInfo that is also initialized with
* gst_dsd_info_init().
*
* Returns: a new #GstDsdInfo. free with gst_dsd_info_free().
*
* Since: 1.24
*/
GstDsdInfo *
gst_dsd_info_new (void)
{
GstDsdInfo *info;
info = g_slice_new (GstDsdInfo);
gst_dsd_info_init (info);
return info;
}
/**
* gst_dsd_info_new_from_caps:
* @caps: a #GstCaps
*
* Parse @caps to generate a #GstDsdInfo.
*
* Returns: A #GstDsdInfo, or %NULL if @caps couldn't be parsed
*
* Since: 1.24
*/
GstDsdInfo *
gst_dsd_info_new_from_caps (const GstCaps * caps)
{
GstDsdInfo *ret;
g_return_val_if_fail (caps != NULL, NULL);
ret = gst_dsd_info_new ();
if (gst_dsd_info_from_caps (ret, caps)) {
return ret;
} else {
gst_dsd_info_free (ret);
return NULL;
}
}
/**
* gst_dsd_info_init:
* @info: (out caller-allocates): a #GstDsdInfo
*
* Initialize @info with default values.
*
* Since: 1.24
*/
void
gst_dsd_info_init (GstDsdInfo * info)
{
g_return_if_fail (info != NULL);
memset (info, 0, sizeof (GstDsdInfo));
info->format = GST_DSD_FORMAT_UNKNOWN;
}
/**
* gst_dsd_info_set_format:
* @info: a #GstDsdInfo
* @format: the format
* @rate: the DSD rate
* @channels: the number of channels
* @position: (array fixed-size=64) (nullable): the channel positions
*
* Set the default info for the DSD info of @format and @rate and @channels.
*
* Note: This initializes @info first, no values are preserved.
*
* Since: 1.24
*/
void
gst_dsd_info_set_format (GstDsdInfo * info, GstDsdFormat format,
gint rate, gint channels, const GstAudioChannelPosition * positions)
{
gint i;
g_return_if_fail (info != NULL);
g_return_if_fail (format != GST_DSD_FORMAT_UNKNOWN);
g_return_if_fail (channels <= 64 || positions == NULL);
gst_dsd_info_init (info);
info->format = format;
info->rate = rate;
info->channels = channels;
info->layout = GST_AUDIO_LAYOUT_INTERLEAVED;
info->flags = GST_AUDIO_FLAG_NONE;
memset (&info->positions, 0xff, sizeof (info->positions));
if (!positions && channels == 1) {
info->positions[0] = GST_AUDIO_CHANNEL_POSITION_MONO;
return;
} else if (!positions && channels == 2) {
info->positions[0] = GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT;
info->positions[1] = GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT;
return;
} else {
if (!positions
|| !gst_audio_check_valid_channel_positions (positions, channels,
TRUE)) {
if (positions)
g_warning ("Invalid channel positions");
} else {
memcpy (&info->positions, positions,
info->channels * sizeof (info->positions[0]));
if (info->positions[0] == GST_AUDIO_CHANNEL_POSITION_NONE)
info->flags |= GST_AUDIO_FLAG_UNPOSITIONED;
return;
}
}
/* Otherwise a NONE layout */
info->flags |= GST_AUDIO_FLAG_UNPOSITIONED;
for (i = 0; i < MIN (64, channels); i++)
info->positions[i] = GST_AUDIO_CHANNEL_POSITION_NONE;
}
/**
* gst_dsd_info_copy:
* @info: a #GstDsdInfo
*
* Copy a GstDsdInfo structure.
*
* Returns: a new #GstDsdInfo. free with gst_dsd_info_free.
*
* Since: 1.24
*/
GstDsdInfo *
gst_dsd_info_copy (const GstDsdInfo * info)
{
return g_slice_dup (GstDsdInfo, info);
}
/**
* gst_dsd_info_free:
* @info: a #GstDsdInfo
*
* Free a GstDsdInfo structure previously allocated with gst_dsd_info_new()
* or gst_dsd_info_copy().
*
* Since: 1.24
*/
void
gst_dsd_info_free (GstDsdInfo * info)
{
g_slice_free (GstDsdInfo, info);
}
/**
* gst_dsd_info_from_caps:
* @info: (out caller-allocates): a #GstDsdInfo
* @caps: a #GstCaps
*
* Parse @caps and update @info.
*
* Returns: TRUE if @caps could be parsed
*
* Since: 1.24
*/
gboolean
gst_dsd_info_from_caps (GstDsdInfo * info, const GstCaps * caps)
{
GstStructure *fmt_structure;
const gchar *media_type;
const gchar *format_str = NULL;
const gchar *layout_str = NULL;
gboolean reversed_bytes = FALSE;
GstAudioFlags flags = GST_AUDIO_FLAG_NONE;
guint64 channel_mask = 0;
g_return_val_if_fail (info != NULL, FALSE);
g_return_val_if_fail (caps != NULL, FALSE);
g_return_val_if_fail (gst_caps_is_fixed (caps), FALSE);
fmt_structure = gst_caps_get_structure (caps, 0);
media_type = gst_structure_get_name (fmt_structure);
g_return_val_if_fail (g_strcmp0 (media_type, GST_DSD_MEDIA_TYPE) == 0, FALSE);
/* Parse the format */
format_str = gst_structure_get_string (fmt_structure, "format");
if (format_str == NULL) {
GST_ERROR ("caps have no format field; caps: %" GST_PTR_FORMAT, caps);
goto error;
}
info->format = gst_dsd_format_from_string (format_str);
if (info->format == GST_DSD_FORMAT_UNKNOWN) {
GST_ERROR ("caps have unsupported/invalid format field; caps: %"
GST_PTR_FORMAT, caps);
goto error;
}
/* Parse the rate */
if (!gst_structure_get_int (fmt_structure, "rate", &(info->rate))) {
GST_ERROR ("caps have no rate field; caps: %" GST_PTR_FORMAT, caps);
goto error;
}
if (info->rate < 1) {
GST_ERROR ("caps have invalid rate field; caps: %" GST_PTR_FORMAT, caps);
goto error;
}
/* Parse the channels and the channel mask */
if (!gst_structure_get_int (fmt_structure, "channels", &(info->channels))) {
GST_ERROR ("caps have no channels field; caps: %" GST_PTR_FORMAT, caps);
goto error;
}
if (info->channels < 1) {
GST_ERROR ("caps have invalid channels field; caps: %" GST_PTR_FORMAT,
caps);
goto error;
}
if (!gst_structure_get (fmt_structure, "channel-mask", GST_TYPE_BITMASK,
&channel_mask, NULL) || (channel_mask == 0 && info->channels == 1)
) {
switch (info->channels) {
case 1:
info->positions[0] = GST_AUDIO_CHANNEL_POSITION_MONO;
break;
case 2:
info->positions[0] = GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT;
info->positions[1] = GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT;
break;
default:
GST_ERROR
("caps indicate multichannel DSD data but they do not contain channel-mask field; caps: %"
GST_PTR_FORMAT, caps);
goto error;
}
} else if (channel_mask == 0) {
gint i;
flags |= GST_AUDIO_FLAG_UNPOSITIONED;
for (i = 0; i < MIN (64, info->channels); i++)
info->positions[i] = GST_AUDIO_CHANNEL_POSITION_NONE;
} else {
if (!gst_audio_channel_positions_from_mask (info->channels, channel_mask,
info->positions)) {
GST_ERROR ("invalid channel mask 0x%016" G_GINT64_MODIFIER
"x for %d channels", channel_mask, info->channels);
goto error;
}
}
/* Parse the layout */
layout_str = gst_structure_get_string (fmt_structure, "layout");
if (layout_str == NULL || g_strcmp0 (layout_str, "interleaved") == 0)
info->layout = GST_AUDIO_LAYOUT_INTERLEAVED;
else if (g_strcmp0 (layout_str, "non-interleaved") == 0)
info->layout = GST_AUDIO_LAYOUT_NON_INTERLEAVED;
else {
GST_ERROR ("caps contain invalid layout field; caps: %" GST_PTR_FORMAT,
caps);
goto error;
}
gst_structure_get (fmt_structure, "reversed-bytes", G_TYPE_BOOLEAN,
&reversed_bytes, NULL);
info->flags = flags;
info->reversed_bytes = reversed_bytes;
return TRUE;
error:
return FALSE;
}
/**
* gst_dsd_info_to_caps:
* @info: a #GstDsdInfo
*
* Convert the values of @info into a #GstCaps.
*
* Returns: (transfer full): the new #GstCaps containing the
* info of @info.
*
* Since: 1.24
*/
GstCaps *
gst_dsd_info_to_caps (const GstDsdInfo * info)
{
GstCaps *caps;
const gchar *format;
GstAudioFlags flags;
g_return_val_if_fail (info != NULL, NULL);
g_return_val_if_fail (info->format > GST_DSD_FORMAT_UNKNOWN
&& info->format < GST_NUM_DSD_FORMATS, NULL);
g_return_val_if_fail (info->rate >= 1, NULL);
g_return_val_if_fail (info->channels >= 1, NULL);
format = gst_dsd_format_to_string (info->format);
g_return_val_if_fail (format != NULL, NULL);
flags = info->flags;
if ((flags & GST_AUDIO_FLAG_UNPOSITIONED) && info->channels > 1
&& info->positions[0] != GST_AUDIO_CHANNEL_POSITION_NONE) {
flags &= ~GST_AUDIO_FLAG_UNPOSITIONED;
GST_WARNING ("Unpositioned audio channel position flag set but "
"channel positions present");
} else if (!(flags & GST_AUDIO_FLAG_UNPOSITIONED) && info->channels > 1
&& info->positions[0] == GST_AUDIO_CHANNEL_POSITION_NONE) {
flags |= GST_AUDIO_FLAG_UNPOSITIONED;
GST_WARNING ("Unpositioned audio channel position flag not set "
"but no channel positions present");
}
caps = gst_caps_new_simple (GST_DSD_MEDIA_TYPE,
"format", G_TYPE_STRING, format,
"rate", G_TYPE_INT, info->rate,
"channels", G_TYPE_INT, info->channels,
"layout", G_TYPE_STRING, layout_to_string (info->layout),
"reversed-bytes", G_TYPE_BOOLEAN, info->reversed_bytes, NULL);
if (info->channels > 1
|| info->positions[0] != GST_AUDIO_CHANNEL_POSITION_MONO) {
guint64 channel_mask = 0;
if ((flags & GST_AUDIO_FLAG_UNPOSITIONED)) {
channel_mask = 0;
} else {
if (!gst_audio_channel_positions_to_mask (info->positions, info->channels,
TRUE, &channel_mask))
goto invalid_channel_positions;
}
if (info->channels == 1
&& info->positions[0] == GST_AUDIO_CHANNEL_POSITION_MONO) {
/* Default mono special case */
} else {
gst_caps_set_simple (caps, "channel-mask", GST_TYPE_BITMASK, channel_mask,
NULL);
}
}
return caps;
invalid_channel_positions:
GST_ERROR ("Invalid channel positions");
gst_caps_unref (caps);
return NULL;
}
/**
* gst_dsd_info_is_equal:
* @info: a #GstDsdInfo
* @other: a #GstDsdInfo
*
* Compares two #GstDsdInfo and returns whether they are equal or not
*
* Returns: %TRUE if @info and @other are equal, else %FALSE.
*
* Since: 1.24
*/
gboolean
gst_dsd_info_is_equal (const GstDsdInfo * info, const GstDsdInfo * other)
{
if (info == other)
return TRUE;
if (GST_DSD_INFO_FORMAT (info) != GST_DSD_INFO_FORMAT (other))
return FALSE;
if (GST_DSD_INFO_RATE (info) != GST_DSD_INFO_RATE (other))
return FALSE;
if (GST_DSD_INFO_CHANNELS (info) != GST_DSD_INFO_CHANNELS (other))
return FALSE;
if (GST_DSD_INFO_LAYOUT (info) != GST_DSD_INFO_LAYOUT (other))
return FALSE;
if (GST_DSD_INFO_REVERSED_BYTES (info) != GST_DSD_INFO_REVERSED_BYTES (other))
return FALSE;
if (memcmp (info->positions, other->positions,
GST_AUDIO_INFO_CHANNELS (info) * sizeof (GstAudioChannelPosition)) !=
0)
return FALSE;
return TRUE;
}
static void
gst_dsd_convert_copy_bytes_same_format (const guint8 * input_data,
guint8 * output_data, GstDsdFormat format, gsize num_bytes,
gboolean reverse_byte_bits)
{
if (reverse_byte_bits) {
guint index;
for (index = 0; index < num_bytes; ++index)
output_data[index] = byte_bit_reversal_table[input_data[index]];
} else
memcpy (output_data, input_data, num_bytes);
}
/* The conversion functions work by figuring out the index in the input
* data that corresponds to the current index in the output data. The DSD
* bits are grouped into "words" according to the DSD format. For example,
* if input_format is GST_DSD_FORMAT_U16LE, then the input data is
* grouped into 16-bit (= 2 byte) words. The in/out_word_index values
* are the word indices into the input/output data. in/out_word_offset
* values are the offsets *within* the words that are currently being
* accessed. in/out_index are the combination of these values.
* position is the offset in the time axis (= the position value that
* would be used for seeking). In PCM terms, this is the equivalent of
* (byte_offset / bytes_per_frame).
*
* The calculations first figure out the position and channel_nr out
* of out_index. Using these two values it is then possible to calculate
* in_word_index, in_word_width, and ultimately, in_index. The final
* step is then to copy the DSD byte from in_index in input_data to
* out_index in output_data (with reversing the byte's bits if requested).
*
* Conversions to non-interleaved formats work a little differently:
* instead of one out_index there is one plane_index, that is, the
* output is produced per-plane.
*
* For example, with interleaved -> interleaved conversion, given stereo
* data (-> num_channels is 2), U16BE input, and U32BE output, then
* in_word_width is 2, out_word_width is 4, out_stride is 2*4 = 8. An
* out_index 15 means (note that indices start at 0, so channel #1 is the
* second channel):
*
* - out_word_index = out_index / out_word_width = 15 / 8 = 1
* out_index refers to word #1 in the output array
* - out_word_offset = out_index - out_word_index * out_word_width = 15 - 1*8 = 7
* out_index refers to byte #7 in output word #1
* - channel_nr = out_word_index % num_channels = 1 % 2 = 1
* out_index is referring to a byte that belongs to channel #1
* - position = (out_index / out_stride) * out_word_width + out_word_offset =
* (15/8) * 4 + 7 = 11
* out_index refers to time axis offset 11 (in bytes)
*
* Then:
* - in_word_index = (position / in_word_width) * num_channels + channel_nrh =
* (11/2) * 2 + 1 = 11
* - in_word_offset = position % in_word_width = 11 % 2 = 1
* - in_index = in_word_index * in_word_width + in_word_offset = 11 * 2 + 1 = 23
*
* -> We copy the byte #23 in input_data to byte #15 in output_data.
*/
static void
gst_dsd_convert_interleaved_to_interleaved (const guint8 * input_data,
guint8 * output_data, GstDsdFormat input_format, GstDsdFormat output_format,
gsize num_dsd_bytes, gint num_channels, gboolean reverse_byte_bits)
{
if (input_format != output_format) {
guint out_index;
guint in_word_width, out_word_width;
guint out_stride;
gboolean input_is_le = gst_dsd_format_is_le (input_format);
gboolean output_is_le = gst_dsd_format_is_le (output_format);
in_word_width = gst_dsd_format_get_width (input_format);
out_word_width = gst_dsd_format_get_width (output_format);
out_stride = out_word_width * num_channels;
for (out_index = 0; out_index < num_dsd_bytes; ++out_index) {
guint in_word_index, in_word_offset;
guint out_word_index, out_word_offset;
guint in_index;
guint channel_nr;
guint position;
guint8 input_byte;
out_word_index = out_index / out_word_width;
out_word_offset = out_index % out_word_width;
if (output_is_le)
out_word_offset = out_word_width - 1 - out_word_offset;
channel_nr = out_word_index % num_channels;
position = (out_index / out_stride) * out_word_width + out_word_offset;
in_word_index = (position / in_word_width) * num_channels + channel_nr;
in_word_offset = position % in_word_width;
if (input_is_le)
in_word_offset = in_word_width - 1 - in_word_offset;
in_index = in_word_index * in_word_width + in_word_offset;
input_byte = input_data[in_index];
output_data[out_index] =
reverse_byte_bits ? byte_bit_reversal_table[input_byte] : input_byte;
}
} else
gst_dsd_convert_copy_bytes_same_format (input_data, output_data,
input_format, num_dsd_bytes, reverse_byte_bits);
}
static void
gst_dsd_convert_interleaved_to_non_interleaved (const guint8 * input_data,
guint8 * output_data, GstDsdFormat input_format, GstDsdFormat output_format,
const gsize * output_plane_offsets, gsize num_dsd_bytes, gint num_channels,
gboolean reverse_byte_bits)
{
guint plane_index;
guint in_word_width, out_word_width;
guint channel_nr;
gsize num_bytes_per_plane = num_dsd_bytes / num_channels;
gboolean input_is_le = gst_dsd_format_is_le (input_format);
gboolean output_is_le = gst_dsd_format_is_le (output_format);
in_word_width = gst_dsd_format_get_width (input_format);
out_word_width = gst_dsd_format_get_width (output_format);
for (channel_nr = 0; channel_nr < num_channels; ++channel_nr) {
for (plane_index = 0; plane_index < num_bytes_per_plane; ++plane_index) {
guint in_word_index, in_word_offset;
guint out_word_index, out_word_offset;
guint in_index;
guint out_index;
guint position;
guint8 input_byte;
out_word_index = plane_index / out_word_width;
out_word_offset = plane_index % out_word_width;
if (output_is_le)
out_word_offset = out_word_width - 1 - out_word_offset;
position = plane_index;
in_word_index = (position / in_word_width) * num_channels + channel_nr;
in_word_offset = position % in_word_width;
if (input_is_le)
in_word_offset = in_word_width - 1 - in_word_offset;
in_index = in_word_index * in_word_width + in_word_offset;
out_index =
output_plane_offsets[channel_nr] + out_word_index * out_word_width +
out_word_offset;
input_byte = input_data[in_index];
output_data[out_index] =
reverse_byte_bits ? byte_bit_reversal_table[input_byte] : input_byte;
}
}
}
static void
gst_dsd_convert_non_interleaved_to_interleaved (const guint8 * input_data,
guint8 * output_data, GstDsdFormat input_format, GstDsdFormat output_format,
const gsize * input_plane_offsets, gsize num_dsd_bytes, gint num_channels,
gboolean reverse_byte_bits)
{
guint out_index;
guint in_word_width, out_word_width;
guint out_stride;
gboolean input_is_le = gst_dsd_format_is_le (input_format);
gboolean output_is_le = gst_dsd_format_is_le (output_format);
in_word_width = gst_dsd_format_get_width (input_format);
out_word_width = gst_dsd_format_get_width (output_format);
out_stride = out_word_width * num_channels;
for (out_index = 0; out_index < num_dsd_bytes; ++out_index) {
guint in_word_index, in_word_offset;
guint out_word_index, out_word_offset;
guint in_index;
guint channel_nr;
guint position;
guint8 input_byte;
out_word_index = out_index / out_word_width;
out_word_offset = out_index % out_word_width;
if (output_is_le)
out_word_offset = out_word_width - 1 - out_word_offset;
channel_nr = out_word_index % num_channels;
position = (out_index / out_stride) * out_word_width + out_word_offset;
in_word_index = position / in_word_width;
in_word_offset = position % in_word_width;
if (input_is_le)
in_word_offset = in_word_width - 1 - in_word_offset;
in_index =
input_plane_offsets[channel_nr] + in_word_index * in_word_width +
in_word_offset;
input_byte = input_data[in_index];
output_data[out_index] =
reverse_byte_bits ? byte_bit_reversal_table[input_byte] : input_byte;
}
}
static void
gst_dsd_convert_non_interleaved_to_non_interleaved (const guint8 * input_data,
guint8 * output_data, GstDsdFormat input_format, GstDsdFormat output_format,
const gsize * input_plane_offsets, const gsize * output_plane_offsets,
gsize num_dsd_bytes, gint num_channels, gboolean reverse_byte_bits)
{
gboolean same_format = input_format == output_format;
gboolean same_plane_offsets = memcmp (input_plane_offsets,
output_plane_offsets, num_channels * sizeof (gsize)) == 0;
if (same_format && same_plane_offsets) {
gst_dsd_convert_copy_bytes_same_format (input_data, output_data,
input_format, num_dsd_bytes, reverse_byte_bits);
} else if (same_format) {
gint channel_nr;
gsize num_bytes_per_plane = num_dsd_bytes / num_channels;
if (reverse_byte_bits) {
guint plane_index;
guint8 input_byte;
for (channel_nr = 0; channel_nr < num_channels; ++channel_nr) {
for (plane_index = 0; plane_index < num_bytes_per_plane; ++plane_index) {
guint in_index = input_plane_offsets[channel_nr] + plane_index;
guint out_index = output_plane_offsets[channel_nr] + plane_index;
input_byte = input_data[in_index];
output_data[out_index] = byte_bit_reversal_table[input_byte];
}
}
} else {
for (channel_nr = 0; channel_nr < num_channels; ++channel_nr) {
memcpy (output_data + output_plane_offsets[channel_nr],
input_data + input_plane_offsets[channel_nr], num_bytes_per_plane);
}
}
} else {
guint channel_nr;
guint plane_index;
gsize num_bytes_per_plane = num_dsd_bytes / num_channels;
guint in_word_width, out_word_width;
gboolean input_is_le = gst_dsd_format_is_le (input_format);
gboolean output_is_le = gst_dsd_format_is_le (output_format);
in_word_width = gst_dsd_format_get_width (input_format);
out_word_width = gst_dsd_format_get_width (output_format);
for (channel_nr = 0; channel_nr < num_channels; ++channel_nr) {
for (plane_index = 0; plane_index < num_bytes_per_plane; ++plane_index) {
guint in_word_index, in_word_offset;
guint out_word_index, out_word_offset;
guint in_index;
guint out_index;
guint position;
guint8 input_byte;
out_word_index = plane_index / out_word_width;
out_word_offset = plane_index % out_word_width;
if (output_is_le)
out_word_offset = out_word_width - 1 - out_word_offset;
position = plane_index;
in_word_index = position / in_word_width;
in_word_offset = position % in_word_width;
if (input_is_le)
in_word_offset = in_word_width - 1 - in_word_offset;
in_index =
input_plane_offsets[channel_nr] + in_word_index * in_word_width +
in_word_offset;
out_index =
output_plane_offsets[channel_nr] + out_word_index * out_word_width +
out_word_offset;
input_byte = input_data[in_index];
output_data[out_index] =
reverse_byte_bits ? byte_bit_reversal_table[input_byte] :
input_byte;
}
}
}
}
/**
* gst_dsd_convert:
* @input_data: the DSD format conversion's input source
* @output_data: the DSD format conversion's output destination
* @input_format: DSD format of the input data to convert from
* @output_format: DSD format of the output data to convert to
* @input_layout: Input data layout
* @output_layout: Output data layout
* @input_plane_offsets: Plane offsets for non-interleaved input data
* @output_plane_offsets: Plane offsets for non-interleaved output data
* @num_dsd_bytes: How many bytes with DSD data to convert
* @num_channels: Number of channels (must be at least 1)
* @reverse_byte_bits: If TRUE, reverse the bits in each DSD byte
*
* Converts DSD data from one layout and grouping format to another.
* @num_bytes must be an integer multiple of the width of both input
* and output format. For example, if the input format is GST_DSD_FORMAT_U32LE,
* and the output format is GST_DSD_FORMAT_U16BE, then @num_bytes must
* be an integer multiple of both 4 (U32LE width) and 2 (U16BE width).
*
* @reverse_byte_bits is necessary if the bit order within the DSD bytes
* needs to be reversed. This is rarely necessary, and is not to be
* confused with the endianness of formats (which determines the ordering
* of *bytes*).
*
* @input_plane_offsets must not be NULL if @input_layout is set to
* #GST_AUDIO_LAYOUT_NON_INTERLEAVED. The same applies to @output_plane_offsets.
* These plane offsets define the starting offset of the planes (there is
* exactly one plane per channel) within @input_data and @output_data
* respectively. If GST_AUDIO_LAYOUT_INTERLEAVED is used, the plane offsets
* are ignored.
*
* Since: 1.24
*/
void
gst_dsd_convert (const guint8 * input_data, guint8 * output_data,
GstDsdFormat input_format, GstDsdFormat output_format,
GstAudioLayout input_layout, GstAudioLayout output_layout,
const gsize * input_plane_offsets, const gsize * output_plane_offsets,
gsize num_dsd_bytes, gint num_channels, gboolean reverse_byte_bits)
{
g_return_if_fail (input_data != NULL);
g_return_if_fail (output_data != NULL);
g_return_if_fail (input_format > GST_DSD_FORMAT_UNKNOWN
&& input_format < GST_NUM_DSD_FORMATS);
g_return_if_fail (output_format > GST_DSD_FORMAT_UNKNOWN
&& output_format < GST_NUM_DSD_FORMATS);
g_return_if_fail (input_layout == GST_AUDIO_LAYOUT_INTERLEAVED
|| input_plane_offsets != NULL);
g_return_if_fail (output_layout == GST_AUDIO_LAYOUT_INTERLEAVED
|| output_plane_offsets != NULL);
g_return_if_fail (num_dsd_bytes > 0);
g_return_if_fail (
(num_dsd_bytes % gst_dsd_format_get_width (input_format)) == 0);
g_return_if_fail (
(num_dsd_bytes % gst_dsd_format_get_width (output_format)) == 0);
g_return_if_fail (num_channels > 0);
GST_LOG ("converting DSD: input: format %s layout %s output: format %s "
"layout %s num channels: %d num DSD bytes: %" G_GSIZE_FORMAT " "
"reverse byte bits: %d", gst_dsd_format_to_string (input_format),
layout_to_string (input_layout), gst_dsd_format_to_string (output_format),
layout_to_string (output_layout), num_channels, num_dsd_bytes,
reverse_byte_bits);
switch (input_layout) {
case GST_AUDIO_LAYOUT_INTERLEAVED:
switch (output_layout) {
case GST_AUDIO_LAYOUT_INTERLEAVED:
gst_dsd_convert_interleaved_to_interleaved (input_data, output_data,
input_format, output_format, num_dsd_bytes, num_channels,
reverse_byte_bits);
break;
case GST_AUDIO_LAYOUT_NON_INTERLEAVED:
gst_dsd_convert_interleaved_to_non_interleaved (input_data,
output_data, input_format, output_format, output_plane_offsets,
num_dsd_bytes, num_channels, reverse_byte_bits);
break;
default:
g_assert_not_reached ();
}
break;
case GST_AUDIO_LAYOUT_NON_INTERLEAVED:
switch (output_layout) {
case GST_AUDIO_LAYOUT_INTERLEAVED:
gst_dsd_convert_non_interleaved_to_interleaved (input_data,
output_data, input_format, output_format, input_plane_offsets,
num_dsd_bytes, num_channels, reverse_byte_bits);
break;
case GST_AUDIO_LAYOUT_NON_INTERLEAVED:
gst_dsd_convert_non_interleaved_to_non_interleaved (input_data,
output_data, input_format, output_format, input_plane_offsets,
output_plane_offsets, num_dsd_bytes, num_channels,
reverse_byte_bits);
break;
default:
g_assert_not_reached ();
}
break;
default:
g_assert_not_reached ();
}
}