2020-05-25 20:17:41 +00:00
|
|
|
/* GStreamer
|
|
|
|
* Copyright (C) 2020 Seungha Yang <seungha@centricular.com>
|
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Library General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Library General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Library General Public
|
|
|
|
* License along with this library; if not, write to the
|
|
|
|
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
|
|
|
|
* Boston, MA 02110-1301, USA.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
|
|
#include <config.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <winapifamily.h>
|
|
|
|
|
|
|
|
#include "gstwasapi2sink.h"
|
|
|
|
#include "gstwasapi2src.h"
|
2020-05-27 20:09:47 +00:00
|
|
|
#include "gstwasapi2device.h"
|
wasapi2: Rewrite plugin and implement audioringbuffer subclass
... based on MediaFoundation work queue API.
By this commit, wasapi2 plugin will make use of pull mode scheduling
with audioringbuffer subclass.
There are several drawbacks of audiosrc/audiosink subclassing
(not audiobasesrc/audiobasesink) for WASAPI API, which are:
* audiosrc/audiosink classes try to set high priority to
read/write thread via MMCSS (Multimedia Class Scheduler Service)
but it's not allowed in case of UWP application.
In order to use MMCSS in UWP, application should use MediaFoundation
work queue indirectly.
Since audiosrc/audiosink scheduling model is not compatible with
MediaFoundation's work queue model, audioringbuffer subclassing
is required.
* WASAPI capture device might report larger packet size than expected
(i.e., larger frames we can read than expected frame size per period).
Meanwhile, in any case, application should drain all packets at that moment.
In order to handle the case, wasapi/wasapi2 plugins were making use of
GstAdapter which is obviously sub-optimal because it requires additional
memory allocation and copy.
By implementing audioringbuffer subclassing, we can avoid such inefficiency.
In this commit, all the device read/write operations will be moved
to newly implemented wasapi2ringbuffer class and
existing wasapi2client class will take care of device enumeration
and activation parts only.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2306>
2021-05-10 11:45:28 +00:00
|
|
|
#include "gstwasapi2util.h"
|
|
|
|
#include <mfapi.h>
|
2020-05-25 20:17:41 +00:00
|
|
|
|
|
|
|
GST_DEBUG_CATEGORY (gst_wasapi2_debug);
|
|
|
|
GST_DEBUG_CATEGORY (gst_wasapi2_client_debug);
|
|
|
|
|
wasapi2: Rewrite plugin and implement audioringbuffer subclass
... based on MediaFoundation work queue API.
By this commit, wasapi2 plugin will make use of pull mode scheduling
with audioringbuffer subclass.
There are several drawbacks of audiosrc/audiosink subclassing
(not audiobasesrc/audiobasesink) for WASAPI API, which are:
* audiosrc/audiosink classes try to set high priority to
read/write thread via MMCSS (Multimedia Class Scheduler Service)
but it's not allowed in case of UWP application.
In order to use MMCSS in UWP, application should use MediaFoundation
work queue indirectly.
Since audiosrc/audiosink scheduling model is not compatible with
MediaFoundation's work queue model, audioringbuffer subclassing
is required.
* WASAPI capture device might report larger packet size than expected
(i.e., larger frames we can read than expected frame size per period).
Meanwhile, in any case, application should drain all packets at that moment.
In order to handle the case, wasapi/wasapi2 plugins were making use of
GstAdapter which is obviously sub-optimal because it requires additional
memory allocation and copy.
By implementing audioringbuffer subclassing, we can avoid such inefficiency.
In this commit, all the device read/write operations will be moved
to newly implemented wasapi2ringbuffer class and
existing wasapi2client class will take care of device enumeration
and activation parts only.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2306>
2021-05-10 11:45:28 +00:00
|
|
|
static void
|
|
|
|
plugin_deinit (gpointer data)
|
|
|
|
{
|
|
|
|
MFShutdown ();
|
|
|
|
}
|
|
|
|
|
2020-05-25 20:17:41 +00:00
|
|
|
static gboolean
|
|
|
|
plugin_init (GstPlugin * plugin)
|
|
|
|
{
|
|
|
|
GstRank rank = GST_RANK_SECONDARY;
|
wasapi2: Rewrite plugin and implement audioringbuffer subclass
... based on MediaFoundation work queue API.
By this commit, wasapi2 plugin will make use of pull mode scheduling
with audioringbuffer subclass.
There are several drawbacks of audiosrc/audiosink subclassing
(not audiobasesrc/audiobasesink) for WASAPI API, which are:
* audiosrc/audiosink classes try to set high priority to
read/write thread via MMCSS (Multimedia Class Scheduler Service)
but it's not allowed in case of UWP application.
In order to use MMCSS in UWP, application should use MediaFoundation
work queue indirectly.
Since audiosrc/audiosink scheduling model is not compatible with
MediaFoundation's work queue model, audioringbuffer subclassing
is required.
* WASAPI capture device might report larger packet size than expected
(i.e., larger frames we can read than expected frame size per period).
Meanwhile, in any case, application should drain all packets at that moment.
In order to handle the case, wasapi/wasapi2 plugins were making use of
GstAdapter which is obviously sub-optimal because it requires additional
memory allocation and copy.
By implementing audioringbuffer subclassing, we can avoid such inefficiency.
In this commit, all the device read/write operations will be moved
to newly implemented wasapi2ringbuffer class and
existing wasapi2client class will take care of device enumeration
and activation parts only.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2306>
2021-05-10 11:45:28 +00:00
|
|
|
HRESULT hr;
|
2020-05-25 20:17:41 +00:00
|
|
|
|
2020-06-08 15:20:08 +00:00
|
|
|
/**
|
2020-07-02 16:10:21 +00:00
|
|
|
* plugin-wasapi2:
|
2020-06-08 15:20:08 +00:00
|
|
|
*
|
|
|
|
* Since: 1.18
|
|
|
|
*/
|
|
|
|
|
wasapi2: Rewrite plugin and implement audioringbuffer subclass
... based on MediaFoundation work queue API.
By this commit, wasapi2 plugin will make use of pull mode scheduling
with audioringbuffer subclass.
There are several drawbacks of audiosrc/audiosink subclassing
(not audiobasesrc/audiobasesink) for WASAPI API, which are:
* audiosrc/audiosink classes try to set high priority to
read/write thread via MMCSS (Multimedia Class Scheduler Service)
but it's not allowed in case of UWP application.
In order to use MMCSS in UWP, application should use MediaFoundation
work queue indirectly.
Since audiosrc/audiosink scheduling model is not compatible with
MediaFoundation's work queue model, audioringbuffer subclassing
is required.
* WASAPI capture device might report larger packet size than expected
(i.e., larger frames we can read than expected frame size per period).
Meanwhile, in any case, application should drain all packets at that moment.
In order to handle the case, wasapi/wasapi2 plugins were making use of
GstAdapter which is obviously sub-optimal because it requires additional
memory allocation and copy.
By implementing audioringbuffer subclassing, we can avoid such inefficiency.
In this commit, all the device read/write operations will be moved
to newly implemented wasapi2ringbuffer class and
existing wasapi2client class will take care of device enumeration
and activation parts only.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2306>
2021-05-10 11:45:28 +00:00
|
|
|
hr = MFStartup (MF_VERSION, MFSTARTUP_NOSOCKET);
|
|
|
|
if (!gst_wasapi2_result (hr)) {
|
|
|
|
GST_WARNING ("MFStartup failure, hr: 0x%x", hr);
|
|
|
|
return TRUE;
|
|
|
|
}
|
2020-05-25 20:17:41 +00:00
|
|
|
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
|
|
|
|
/* If we are building for UWP, wasapi2 plugin should have the highest rank */
|
|
|
|
rank = GST_RANK_PRIMARY + 1;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
GST_DEBUG_CATEGORY_INIT (gst_wasapi2_debug, "wasapi2", 0, "wasapi2");
|
|
|
|
GST_DEBUG_CATEGORY_INIT (gst_wasapi2_client_debug, "wasapi2client",
|
|
|
|
0, "wasapi2client");
|
|
|
|
|
|
|
|
gst_element_register (plugin, "wasapi2sink", rank, GST_TYPE_WASAPI2_SINK);
|
|
|
|
gst_element_register (plugin, "wasapi2src", rank, GST_TYPE_WASAPI2_SRC);
|
|
|
|
|
2020-05-27 20:09:47 +00:00
|
|
|
gst_device_provider_register (plugin, "wasapi2deviceprovider",
|
|
|
|
rank, GST_TYPE_WASAPI2_DEVICE_PROVIDER);
|
|
|
|
|
wasapi2: Rewrite plugin and implement audioringbuffer subclass
... based on MediaFoundation work queue API.
By this commit, wasapi2 plugin will make use of pull mode scheduling
with audioringbuffer subclass.
There are several drawbacks of audiosrc/audiosink subclassing
(not audiobasesrc/audiobasesink) for WASAPI API, which are:
* audiosrc/audiosink classes try to set high priority to
read/write thread via MMCSS (Multimedia Class Scheduler Service)
but it's not allowed in case of UWP application.
In order to use MMCSS in UWP, application should use MediaFoundation
work queue indirectly.
Since audiosrc/audiosink scheduling model is not compatible with
MediaFoundation's work queue model, audioringbuffer subclassing
is required.
* WASAPI capture device might report larger packet size than expected
(i.e., larger frames we can read than expected frame size per period).
Meanwhile, in any case, application should drain all packets at that moment.
In order to handle the case, wasapi/wasapi2 plugins were making use of
GstAdapter which is obviously sub-optimal because it requires additional
memory allocation and copy.
By implementing audioringbuffer subclassing, we can avoid such inefficiency.
In this commit, all the device read/write operations will be moved
to newly implemented wasapi2ringbuffer class and
existing wasapi2client class will take care of device enumeration
and activation parts only.
Part-of: <https://gitlab.freedesktop.org/gstreamer/gst-plugins-bad/-/merge_requests/2306>
2021-05-10 11:45:28 +00:00
|
|
|
g_object_set_data_full (G_OBJECT (plugin),
|
|
|
|
"plugin-wasapi2-shutdown", "shutdown-data",
|
|
|
|
(GDestroyNotify) plugin_deinit);
|
|
|
|
|
2020-05-25 20:17:41 +00:00
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
GST_PLUGIN_DEFINE (GST_VERSION_MAJOR,
|
|
|
|
GST_VERSION_MINOR,
|
|
|
|
wasapi2,
|
|
|
|
"Windows audio session API plugin",
|
|
|
|
plugin_init, VERSION, "LGPL", GST_PACKAGE_NAME, GST_PACKAGE_ORIGIN)
|